MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 1. a) $\nabla f=\left\langle 2 x y^{2}-1,2 x^{2} y\right\rangle=\langle 3,8\rangle=3 \hat{i}-8 \hat{j}$.
b) $z-2=3(x-2)+8(y-1) \quad$ or $\quad z=3 x+8 y-12$.
c) $\Delta x=1.9-2=-1 / 10$ and $\Delta y=1.1-1=1 / 10$. So $z \simeq 2+3 \Delta x+8 \Delta y=2-3 / 10+8 / 10=2.5$
d) $\left.\frac{d f}{d s}\right|_{\hat{u}}=\nabla f \cdot \hat{u}=\langle 3,8\rangle \cdot \frac{\langle-1,1\rangle}{\sqrt{2}}=\frac{-3+8}{\sqrt{2}}=\frac{5}{\sqrt{2}}$

Problem 2.

Therefore there is just one critical point at $(-20,34)$. Since

$$
w_{x x} w_{y y}-w_{x y}^{2}=(-6)(-2)-(-4)^{2}=12-16=-4<0,
$$

the critical point is a saddle point.
b) There is no critical point in the first quadrant, hence the maximum must be at infinity or on the boundary of the first quadrant.

The boundary is composed of two half-lines:

- $x=0$ and $y \geq 0$ on which $w=-y^{2}-12 y$. It has a maximum $(w=0)$ at $y=0$.
- $y=0$ and $x \geq 0$, where $w=-3 x^{2}+16 x$. (The graph is a parabola pointing downwards). Maximum: $w_{x}=-6 x+16=0 \quad \Rightarrow x=8 / 3$. Hence w has a maximum at $(8 / 3,0)$ and $w=-3(8 / 3)^{2}+16 \cdot 8 / 3=64 / 3>0$.

We now check that the maximum of w is not at infinity:

- If $y \geq 0$ and $x \rightarrow+\infty$ then $w \leq-3 x^{2}+16 x$, which tends to $-\infty$ as $x \rightarrow+\infty$.
- If $0 \leq x \leq C$ and $y \rightarrow+\infty$, then $w \leq-y^{2}+16 C$, which tends to $-\infty$ as $y \rightarrow+\infty$.

We conclude that the maximum of w in the first quadrant is at $(8 / 3,0)$.
Problem 4. a) $\left\{\begin{array}{l}w_{x}=u_{x} w_{u}+v_{x} w_{v}=-\frac{y}{x^{2}} w_{u}+2 x w_{v} \\ w_{y}=u_{y} w_{u}+v_{y} w_{v}=\frac{1}{x} w_{u}+2 y w_{v}\end{array}\right.$
b) $x w_{x}+y w_{y}=x\left(-\frac{y}{x^{2}} w_{u}+2 x w_{v}\right)+y\left(\frac{1}{x} w_{u}+2 y w_{v}\right)=\left(-\frac{y}{x}+\frac{y}{x}\right) w_{u}+\left(2 x^{2}+2 y^{2}\right) w_{v}=2 v w_{v}$.
c) $x w_{x}+y w_{y}=2 v w_{v}=2 v \cdot 5 v^{4}=10 v^{5}$.

Problem 5. a) $f(x, y, z)=x$; the constraint is $g(x, y, z)=x^{4}+y^{4}+z^{4}+x y+y z+z x=6$. The Lagrange multiplier equation is:

$$
\nabla f=\lambda \nabla g \Leftrightarrow\left\{\begin{array}{l}
1=\lambda\left(4 x^{3}+y+z\right) \\
0=\lambda\left(4 y^{3}+x+z\right) \\
0=\lambda\left(4 z^{3}+x+y\right)
\end{array}\right.
$$

b) The level surfaces of f and g are tangent at $\left(x_{0}, y_{0}, z_{0}\right)$, so they have the same tangent plane. The level surface of f is the plane $x=x_{0}$; hence this is also the tangent plane to the surface $g=6$ at $\left(x_{0}, y_{0}, z_{0}\right)$.

Second method: at $\left(x_{0}, y_{0}, z_{0}\right)$, we have

$$
\left.\begin{array}{l}
1=\lambda g_{x} \\
0=\lambda g_{y} \\
0=\lambda g_{z}
\end{array}\right\} \quad \Rightarrow \quad \lambda \neq 0 \text { and }\left\langle g_{x}, g_{y}, g_{z}\right\rangle=\left\langle\frac{1}{\lambda}, 0,0\right\rangle .
$$

So $\left\langle\frac{1}{\lambda}, 0,0\right\rangle$ is perpendicular to the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$; the equation of the tangent plane is then $\frac{1}{\lambda}\left(x-x_{0}\right)=0$, or equivalently $x=x_{0}$.

Problem 6.
a) Taking the total differential of $x^{2}+y^{3}-z^{4}=1$, we get: $2 x d x+3 y^{2} d y-4 z^{3} d z=0$. Similarly, from $z^{3}+z x+x y=3$, we get: $(y+z) d x+x d y+\left(3 z^{2}+x\right) d z=0$.
b) At $(1,1,1)$ we have: $2 d x+3 d y-4 d z=0$ and $2 d x+d y+4 d z=0$. We eliminate $d z$ (by adding these two equations): $4 d x+4 d y=0$, so $d y=-d x$, and hence $d y / d x=-1$.

