MIT OpenCourseWare http://ocw.mit.edu

18.02 Multivariable Calculus Fall 2007

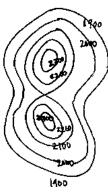
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Practice Exam 2B

Problem 1. Let $f(x, y) = x^2y^2 - x$.

- a) (5) Find ∇f at (2,1)
- b) (5) Write the equation for the tangent plane to the graph of f at (2,1,2).
- c) (5) Use a linear approximation to find the approximate value of f(1.9, 1.1).
- d) (5) Find the directional derivative of f at (2,1) in the direction of $-\hat{\mathbf{i}} + \hat{\mathbf{j}}$.

Problem 2. (10) On the contour plot below, mark the portion of the level curve f = 2000 on which $\frac{\partial f}{\partial u} \geq 0$.



Problem 3. a) (10) Find the critical points of

$$w = -3x^2 - 4xy - y^2 - 12y + 16x$$

and say what type each critical point is.

b) (10) Find the point of the first quadrant $x \ge 0$, $y \ge 0$ at which w is largest. Justify your answer.

Problem 4. Let u = y/x, $v = x^2 + y^2$, w = w(u, v).

- a) (10) Express the partial derivatives w_x and w_y in terms of w_u and w_v (and x and y).
- b) (7) Express $xw_x + yw_y$ in terms of w_u and w_v . Write the coefficients as functions of u and v.
- c) (3) Find $xw_x + yw_y$ in case $w = v^5$.

Problem 5. a) (10) Find the Lagrange multiplier equations for the point of the surface

$$x^4 + y^4 + z^4 + xy + yz + zx = 6$$

at which x is largest. (Do not solve.)

b) (5) Given that x is largest at the point (x_0, y_0, z_0) , find the equation for the tangent plane to the surface at that point.

Problem 6. Suppose that $x^{2} + y^{3} - z^{4} = 1$ and $z^{3} + zx + xy = 3$.

- a) (8) Take the total differential of each of these equations.
- b) (7) The two surfaces in part (a) intersect in a curve along which y is a function of x. Find dy/dx at (x, y, z) = (1, 1, 1).