MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Practice Exam 2 A - Solutions

Problem 1.

a) $\nabla f=\left(y-4 x^{3}\right) \hat{\imath}+x \hat{\jmath}$; at $P, \nabla f=\langle-3,1\rangle$.
b) $\Delta w \simeq-3 \Delta x+\Delta y$.

Problem 2.

a) By measuring, $\Delta h=100$ for $\Delta s \simeq 500$, so $\left(\frac{d h}{d s}\right)_{\hat{u}} \simeq \frac{\Delta h}{\Delta s} \simeq .2$.
b) Q is the northernmost point on the curve $h=2200$; the vertical distance between consecutive level curves is about $1 / 3$ of the given length unit, so $\frac{\partial h}{\partial y} \simeq \frac{\Delta h}{\Delta y} \simeq \frac{-100}{1000 / 3} \simeq-.3$.

Problem 3.

$f(x, y, z)=x^{3} y+z^{2}=3:$ the normal vector is $\nabla f=\left\langle 3 x^{2} y, x^{3}, 2 z\right\rangle=\langle 3,-1,4\rangle$. The tangent plane is $3 x-y+4 z=4$.

Problem 4.
a) The volume is $x y z=x y\left(1-x^{2}-y^{2}\right)=x y-x^{3} y-x y^{3}$. Critical points: $f_{x}=y-3 x^{2} y-y^{3}=0$, $f_{y}=x-x^{3}-3 x y^{2}=0$.
b) Assuming $x>0$ and $y>0$, the equations can be rewritten as $1-3 x^{2}-y^{2}=0,1-x^{2}-3 y^{2}=0$. Solution: $x^{2}=y^{2}=1 / 4$, i.e. $(x, y)=(1 / 2,1 / 2)$.
c) $f_{x x}=-6 x y=-3 / 2, f_{y y}=-6 x y=-3 / 2, f_{x y}=1-3 x^{2}-3 y^{2}=-1 / 2$. So $f_{x x} f_{y y}-f_{x y}^{2}>0$, and $f_{x x}<0$, it is a local maximum.
d) The maximum of f lies either at $(1 / 2,1 / 2)$, or on the boundary of the domain or at infinity. Since $f(x, y)=x y\left(1-x^{2}-y^{2}\right), f=0$ when either $x \rightarrow 0$ or $y \rightarrow 0$, and $f \rightarrow-\infty$ when $x \rightarrow \infty$ or $y \rightarrow \infty$ (since $\left.x^{2}+y^{2} \rightarrow \infty\right)$. So the maximum is at $(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)$, where $f\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{8}$.

Problem 5.

a) $f(x, y, z)=x y z, g(x, y, z)=x^{2}+y^{2}+z=1$: one must solve the Lagrange multiplier equation $\nabla f=\lambda \nabla g$, i.e. $y z=2 \lambda x, x z=2 \lambda y, x y=\lambda$, and the constraint equation $x^{2}+y^{2}+z=1$.
b) Dividing the first two equations $y z=2 \lambda x$ and $x z=2 \lambda y$ by each other, we get $y / x=x / y$, so $x^{2}=y^{2}$; since $x>0$ and $y>0$ we get $y=x$. Substituting this into the Lagrange multiplier equations, we get $z=2 \lambda$ and $x^{2}=\lambda$. Hence $z=2 x^{2}$, and the constraint equation becomes $4 x^{2}=1$, so $x=\frac{1}{2}, y=\frac{1}{2}, z=\frac{1}{2}$.

Problem 6.

$$
\frac{\partial w}{\partial x}=f_{u} u_{x}+f_{v} v_{x}=y f_{u}+\frac{1}{y} f_{v} . \quad \frac{\partial w}{\partial y}=f_{u} u_{y}+f_{v} v_{y}=x f_{u}-\frac{x}{y^{2}} f_{v} .
$$

Problem 7.

Using the chain rule: $\left(\frac{\partial w}{\partial z}\right)_{y}=\frac{\partial w}{\partial x}\left(\frac{\partial x}{\partial z}\right)_{y}=3 x^{2} y\left(\frac{\partial x}{\partial z}\right)_{y}$. To find $\left(\frac{\partial x}{\partial z}\right)_{y}$, differentiate the relation $x^{2} y+x z^{2}=5$ w.r.t. z holding y constant: $\left(2 x y+z^{2}\right)\left(\frac{\partial x}{\partial z}\right)_{y}+2 x z=0$, so $\left(\frac{\partial x}{\partial z}\right)_{y}=$ $\frac{-2 x z}{2 x y+z^{2}}$. Therefore $\left(\frac{\partial w}{\partial z}\right)_{y}=\frac{-6 x^{3} y z}{2 x y+z^{2}}$. At $(x, y, z)=(1,1,2)$ this is equal to -2 .

