MIT OpenCourseWare http://ocw.mit.edu

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Practice Exam 2 A – Solutions

Problem 1.

- a) $\nabla f = (y 4x^3)\hat{\mathbf{i}} + x\hat{\mathbf{j}}$; at P, $\nabla f = \langle -3, 1 \rangle$.
- b) $\Delta w \simeq -3 \Delta x + \Delta y$.

Problem 2.

- a) By measuring, $\Delta h = 100$ for $\Delta s \simeq 500$, so $\left(\frac{dh}{ds}\right)_{\hat{u}} \simeq \frac{\Delta h}{\Delta s} \simeq .2$.
- b) Q is the northernmost point on the curve h=2200; the vertical distance between consecutive level curves is about 1/3 of the given length unit, so $\frac{\partial h}{\partial u} \simeq \frac{\Delta h}{\Delta u} \simeq \frac{-100}{1000/3} \simeq -.3$.

Problem 3.

 $f(x,y,z)=x^3y+z^2=3$: the normal vector is $\nabla f=\langle 3x^2y,x^3,2z\rangle=\langle 3,-1,4\rangle$. The tangent plane is 3x-y+4z=4.

Problem 4.

- a) The volume is $xyz = xy(1-x^2-y^2) = xy-x^3y-xy^3$. Critical points: $f_x = y-3x^2y-y^3 = 0$, $f_y = x x^3 3xy^2 = 0$.
- b) Assuming x > 0 and y > 0, the equations can be rewritten as $1 3x^2 y^2 = 0$, $1 x^2 3y^2 = 0$. Solution: $x^2 = y^2 = 1/4$, i.e. (x, y) = (1/2, 1/2).
- c) $f_{xx} = -6xy = -3/2$, $f_{yy} = -6xy = -3/2$, $f_{xy} = 1 3x^2 3y^2 = -1/2$. So $f_{xx}f_{yy} f_{xy}^2 > 0$, and $f_{xx} < 0$, it is a local maximum.
- d) The maximum of f lies either at (1/2,1/2), or on the boundary of the domain or at infinity. Since $f(x,y)=xy(1-x^2-y^2), f=0$ when either $x\to 0$ or $y\to 0$, and $f\to -\infty$ when $x\to \infty$ or $y\to \infty$ (since $x^2+y^2\to \infty$). So the maximum is at $(x,y)=(\frac{1}{2},\frac{1}{2})$, where $f(\frac{1}{2},\frac{1}{2})=\frac{1}{8}$.

Problem 5.

- a) f(x, y, z) = xyz, $g(x, y, z) = x^2 + y^2 + z = 1$: one must solve the Lagrange multiplier equation $\nabla f = \lambda \nabla g$, i.e. $yz = 2\lambda x$, $xz = 2\lambda y$, $xy = \lambda$, and the constraint equation $x^2 + y^2 + z = 1$.
- b) Dividing the first two equations $yz=2\lambda x$ and $xz=2\lambda y$ by each other, we get y/x=x/y, so $x^2=y^2$; since x>0 and y>0 we get y=x. Substituting this into the Lagrange multiplier equations, we get $z=2\lambda$ and $x^2=\lambda$. Hence $z=2x^2$, and the constraint equation becomes $4x^2=1$, so $x=\frac{1}{2},\ y=\frac{1}{2},\ z=\frac{1}{2}$.

Problem 6.

$$\frac{\partial w}{\partial x} = f_u u_x + f_v v_x = y f_u + \frac{1}{y} f_v. \quad \frac{\partial w}{\partial y} = f_u u_y + f_v v_y = x f_u - \frac{x}{y^2} f_v.$$

Problem 7.

Using the chain rule: $\left(\frac{\partial w}{\partial z}\right)_y = \frac{\partial w}{\partial x} \left(\frac{\partial x}{\partial z}\right)_y = 3x^2y \left(\frac{\partial x}{\partial z}\right)_y$. To find $\left(\frac{\partial x}{\partial z}\right)_y$, differentiate the relation $x^2y + xz^2 = 5$ w.r.t. z holding y constant: $(2xy + z^2) \left(\frac{\partial x}{\partial z}\right)_y + 2xz = 0$, so $\left(\frac{\partial x}{\partial z}\right)_y = \frac{-2xz}{2xy + z^2}$. Therefore $\left(\frac{\partial w}{\partial z}\right)_y = \frac{-6x^3yz}{2xy + z^2}$. At (x, y, z) = (1, 1, 2) this is equal to -2.