MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Practice Exam 1B Solutions

Problem 1.

a) $P=(1,0,0), Q=(0,2,0)$ and $R=(0,0,3)$. Therefore $\overrightarrow{Q P}=\hat{\boldsymbol{\imath}}-2 \hat{\jmath}$ and $\overrightarrow{Q R}=-2 \hat{\boldsymbol{\jmath}}+3 \hat{\boldsymbol{k}}$.
b) $\cos \theta=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{|\overrightarrow{Q P}||\overrightarrow{Q P}|}=\frac{\langle 1,-2,0\rangle \cdot\langle 0,-2,3\rangle}{\sqrt{1^{2}+2^{2}} \sqrt{2^{2}+3^{2}}}=\frac{4}{\sqrt{65}}$

Problem 2.

a) $\overrightarrow{P Q}=\langle-1,2,0\rangle, \overrightarrow{P R}=\langle-1,0,3\rangle$.

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\hat{\boldsymbol{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\boldsymbol{k}} \\
-1 & 2 & 0 \\
-1 & 0 & 3
\end{array}\right|=6 \hat{\boldsymbol{\imath}}+3 \hat{\boldsymbol{\jmath}}+2 \hat{\boldsymbol{k}} .
$$

Then

$$
\operatorname{area}(\Delta)=\frac{1}{2}|\overrightarrow{P Q} \times \overrightarrow{P R}|=\frac{1}{2} \sqrt{6^{2}+3^{2}+2^{2}}=\frac{1}{2} \sqrt{49}=\frac{7}{2} .
$$

b) A normal to the plane is given by $\vec{N}=\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 6,3,2\rangle$. Hence the equation has the form $6 x+3 y+2 z=d$. Since P is on the plane $d=6 \cdot 1+3 \cdot 1+2 \cdot 1=11$. In conclusion the equation of the plane is

$$
6 x+3 y+2 z=11
$$

c) The line is parallel to $\langle 2-1,2-2,0-3\rangle=\langle 1,0,-3\rangle$. Since $\vec{N} \cdot\langle 1,0,-3\rangle=6-6=0$, the line is parallel to the plane.

Problem 3.

$\overrightarrow{O A}=\langle 10 t, 0\rangle$ and $\overrightarrow{A B}=\langle\cos t, \sin t\rangle$, hence

$$
\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\langle 10 t+\cos t, \sin t\rangle
$$

The rear bumper is reached at time $t=\pi$ and the position of B is $(10 \pi-1,0)$.
b) $\vec{V}=\langle 10-\sin t, \cos t\rangle$, thus

$$
|\vec{V}|^{2}=(10-\sin t)^{2}+\cos ^{2} t=100-20 \sin t+\sin ^{2} t+\cos ^{2} t=101-20 \sin t
$$

The speed is then given by $\sqrt{101-20 \sin t}$. The speed is smallest when $\sin t$ is largest i.e. $\sin t=1$. It occurs when $t=\pi / 2$. At this time, the position of the bug is $(5 \pi, 1)$. The speed is largest when $\sin t$ is smallest; that happens at the times $t=0$ or π for which the position is then $(0,0)$ and $(10 \pi-1,0)$.

Problem 4.

a) $|M|=-12$.
b) $a=-5, b=7$.
c) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{12}\left[\begin{array}{rrr}1 & 1 & 4 \\ -5 & 7 & -8 \\ 7 & -5 & 4\end{array}\right]\left[\begin{array}{l}0 \\ t \\ 3\end{array}\right]=\left[\begin{array}{c}t / 12+1 \\ 7 t / 12-2 \\ -5 t / 12+1\end{array}\right]$
d) $\frac{d \overrightarrow{\boldsymbol{r}}}{d t}=\left\langle\frac{1}{12}, \frac{7}{12},-\frac{5}{12}\right\rangle$.

Problem 5.
a) $\vec{N} \cdot \vec{r}(t)=6$, where $\vec{N}=\langle 4,-3,-2\rangle$.
b) We differentiate $\vec{N} \cdot \vec{r}(t)=6$:
$0=\frac{d}{d t}(\vec{N} \cdot \vec{r}(t))=\frac{d}{d t} \vec{N} \cdot \vec{r}(t)+\vec{N} \cdot \frac{d}{d t} \vec{r}(t)=\overrightarrow{0} \cdot \vec{r}(t)+\vec{N} \cdot \frac{d}{d t} \vec{r}(t) \quad$ and hence $\vec{N} \perp \frac{d}{d t} \vec{r}(t)$.

