MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.02 Practice Exam 1B Solutions

Problem 1.

a)
$$P = (1, 0, 0), Q = (0, 2, 0) \text{ and } R = (0, 0, 3).$$
 Therefore $\overrightarrow{QP} = \hat{\imath} - 2\hat{\jmath}$ and $\overrightarrow{QR} = -2\hat{\jmath} + 3\hat{k}$.
b) $\cos \theta = \frac{\overrightarrow{QP} \cdot \overrightarrow{QR}}{\left| \overrightarrow{QP} \right| \left| \overrightarrow{QP} \right|} = \frac{\langle 1, -2, 0 \rangle \cdot \langle 0, -2, 3 \rangle}{\sqrt{1^2 + 2^2}\sqrt{2^2 + 3^2}} = \frac{4}{\sqrt{65}}$

Problem 2.

a)
$$\overrightarrow{PQ} = \langle -1, 2, 0 \rangle, \ \overrightarrow{PR} = \langle -1, 0, 3 \rangle.$$

$$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 2 & 0 \\ -1 & 0 & 3 \end{vmatrix} = 6\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$$

Then $area(\Delta) = \frac{1}{2} \left| \overrightarrow{PQ} \times \overrightarrow{PR} \right| = \frac{1}{2} \sqrt{6^2 + 3^2 + 2^2} = \frac{1}{2} \sqrt{49} = \frac{7}{2}.$

b) A normal to the plane is given by $\vec{N} = \vec{PQ} \times \vec{PR} = \langle 6, 3, 2 \rangle$. Hence the equation has the form 6x + 3y + 2z = d. Since P is on the plane $d = 6 \cdot 1 + 3 \cdot 1 + 2 \cdot 1 = 11$. In conclusion the equation of the plane is

$$6x + 3y + 2z = 11$$

c) The line is parallel to $\langle 2-1, 2-2, 0-3 \rangle = \langle 1, 0, -3 \rangle$. Since $\overrightarrow{N} \cdot \langle 1, 0, -3 \rangle = 6 - 6 = 0$, the line is parallel to the plane.

Problem 3.

a)

$$\overrightarrow{OA} = \langle 10t, 0 \rangle \text{ and } \overrightarrow{AB} = \langle \cos t, \sin t \rangle, \text{ hence}$$

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \langle 10t + \cos t, \sin t \rangle.$$
The rear bumper is reached at time $t = \pi$ and the position of B is $(10\pi - 1, 0)$.

b)
$$\vec{V} = \langle 10 - \sin t, \cos t \rangle$$
, thus
 $|\vec{V}|^2 = (10 - \sin t)^2 + \cos^2 t = 100 - 20 \sin t + \sin^2 t + \cos^2 t = 101 - 20 \sin t.$

The speed is then given by $\sqrt{101 - 20 \sin t}$. The speed is smallest when $\sin t$ is largest i.e. $\sin t = 1$. It occurs when $t = \pi/2$. At this time, the position of the bug is $(5\pi, 1)$. The speed is largest when $\sin t$ is smallest; that happens at the times t = 0 or π for which the position is then (0, 0) and $(10\pi - 1, 0)$.

Problem 4.

a)
$$|M| = -12.$$

b) $a = -5, b = 7.$
c) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 1 & 1 & 4 \\ -5 & 7 & -8 \\ 7 & -5 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ t \\ 3 \end{bmatrix} = \begin{bmatrix} t/12+1 \\ 7t/12-2 \\ -5t/12+1 \end{bmatrix}$
d) $\frac{d\vec{r}}{dt} = \left\langle \frac{1}{12}, \frac{7}{12}, -\frac{5}{12} \right\rangle.$
Problem 5.
a) $\vec{N} \cdot \vec{r}(t) = 6$, where $\vec{N} = \langle 4, -3, -2 \rangle.$
b) We differentiate $\vec{N} \cdot \vec{r}(t) = 6:$
 $0 = \frac{d}{dt} \left(\vec{N} \cdot \vec{r}(t) \right) = \frac{d}{dt} \vec{N} \cdot \vec{r}(t) + \vec{N} \cdot \frac{d}{dt} \vec{r}(t) = \vec{0} \cdot \vec{r}(t) + \vec{N} \cdot \frac{d}{dt} \vec{r}(t)$ and hence $\vec{N} \perp \frac{d}{dt} \vec{r}(t).$