MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

### 18.02 Practice Exam 1 A

Problem 1. (15 points)
A unit cube lies in the first octant, with a vertex at the origin (see figure).
a) Express the vectors $\overrightarrow{\mathrm{OQ}}$ (a diagonal of the cube) and $\overrightarrow{\mathrm{OR}}$ (joining O to the center of a face) in terms of $\hat{\mathrm{i}}, \hat{\mathrm{\jmath}}, \hat{\mathrm{k}}$.

b) Find the cosine of the angle between OQ and OR.

Problem 2. (10 points)
The motion of a point $P$ is given by the position vector $\vec{R}=3 \cos t \hat{\imath}+3 \sin t \hat{\jmath}+t \hat{\mathrm{k}}$. Compute the velocity and the speed of $P$.

Problem 3. (15 points: 10, 5)
a) Let $A=\left[\begin{array}{rrr}1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 1 & 0\end{array}\right]$; then $\operatorname{det}(A)=2$ and $A^{-1}=\frac{1}{2}\left[\begin{array}{rrr}1 & a & b \\ -1 & -2 & 5 \\ 2 & 2 & -6\end{array}\right]$; find $a$ and $b$.
b) Solve the system $A X=B$, where $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $B=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$.
c) In the matrix $A$, replace the entry 2 in the upper-right corner by $c$. Find a value of $c$ for which the resulting matrix $M$ is not invertible.

For this value of $c$ the system $M X=0$ has other solutions than the obvious one $X=0$ : find such a solution by using vector operations. (Hint: call $U, V$ and $W$ the three rows of $M$, and observe that $M X=0$ if and only if $X$ is orthogonal to the vectors $U, V$ and $W$.)

Problem 4. (15 points)
The top extremity of a ladder of length $L$ rests against a vertical wall, while the bottom is being pulled away. Find parametric equations for the midpoint $P$ of the ladder, using as parameter the angle $\theta$ between the ladder and the horizontal ground.

Problem 5. (25 points: $10,5,10$ )

a) Find the area of the space triangle with vertices $P_{0}:(2,1,0), P_{1}:(1,0,1), P_{2}:(2,-1,1)$.
b) Find the equation of the plane containing the three points $P_{0}, P_{1}, P_{2}$.
c) Find the intersection of this plane with the line parallel to the vector $\vec{V}=\langle 1,1,1\rangle$ and passing through the point $S:(-1,0,0)$.

Problem 6. (20 points: 5, 5, 10)
a) Let $\vec{R}=x(t) \hat{\imath}+y(t) \hat{\mathrm{\jmath}}+z(t) \hat{\mathrm{k}}$ be the position vector of a path. Give a simple intrinsic formula for $\frac{d}{d t}(\vec{R} \cdot \vec{R})$ in vector notation (not using coordinates).
b) Show that if $\vec{R}$ has constant length, then $\vec{R}$ and $\vec{V}$ are perpendicular.
c) let $\vec{A}$ be the acceleration: still assuming that $\vec{R}$ has constant length, and using vector differentiation, express the quantity $\vec{R} \cdot \vec{A}$ in terms of the velocity vector only.

