Example: $\int_{10}^{\infty} \frac{d x}{\sqrt{x^{3}+3}}$
We could have used a trig substitution to compute $\int_{0}^{\infty} \frac{d x}{\sqrt{x^{2}+10}}$ in the previous example. We can use the limit comparison method to determine whether an integral is finite even if we're unable to find an antiderivative.

For instance, we can't evaluate $\int_{10}^{\infty} \frac{d x}{\sqrt{x^{3}+3}}$. But because:

$$
\frac{1}{\sqrt{x^{3}+3}} \cong \frac{1}{\sqrt{x^{3}}}=\frac{1}{x^{3 / 2}}
$$

we know that:

$$
\int_{10}^{\infty} \frac{d x}{\sqrt{x^{3}+3}} \cong \int_{10}^{\infty} \frac{d x}{x^{3 / 2}}
$$

and so we know that the integral converges to some finite value.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

