Example: $\int_{1}^{\infty} \frac{d x}{x^{p}}$
We know that $\int_{1}^{\infty} \frac{d x}{x}$ diverges. Next we'll find $\int_{1}^{\infty} \frac{d x}{x^{p}}$ for any value of p; we'll see that $p=1$ is a borderline when we do this calculation.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x^{p}} & =\int_{1}^{\infty} x^{-p} d x \\
& =\left.\frac{x^{-p+1}}{-p+1}\right|_{1} ^{\infty} \\
& =\frac{\infty^{-p+1}}{-p+1}-\frac{1^{-p+1}}{-p+1} \\
& =\frac{\infty^{-p+1}}{-p+1}+\frac{1}{p-1}
\end{aligned}
$$

Remember that the ∞ in this expression is shorthand for "a number approaching infinity".

When we think about raising a very large number to the $p+1$ power we see that there are two cases that split exactly at $p=1$. When $p=1$, the exponent is zero and so is the denominator; the expression doesn't make any sense. For all other values of p the expression makes sense and the value of the integral depends on whether $-p+1$ is positive or negative.

$$
\frac{\infty^{-p+1}}{-p+1} \text { is infinite when }-p+1>0
$$

and

$$
\frac{\infty^{-p+1}}{-p+1} \text { is zero when }-p+1<0 .
$$

Check this yourself - this is the sort of problem that will be on the exam.
Conclusion: Combining this with our previous example we see that:

$$
\int_{1}^{\infty} \frac{d x}{x^{p}} \quad \text { diverges if } p \leq 1
$$

and

$$
\int_{1}^{\infty} \frac{d x}{x^{p}} \text { converges to } \frac{1}{p-1} \text { if } p>1 .
$$

Notice that when $p=1$ our formula for the antiderivative is wrong; the antiderivative is $\ln x$ and not $\frac{x^{-p+1}}{-p+1}$. We really needed to do three separate calculations to compute the value of this integral: one for $p<1$, one for $p=1$ and one for $p>1$.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

