Elementary Example of L'Hôpital's Rule

We begin by applying L'Hôpital's rule to a problem we could have solved earlier:

$$
\lim _{x \rightarrow 1} \frac{x^{10}-1}{x^{2}-1}
$$

We listed some categories of limits at the beginning of the course; this falls into the category of "interesting limits" because if we just plug in $x=1$ we get $\frac{0}{0}$. This is called an indeterminate form.

To find the limit using techniques we already know, we'd do the following:

$$
\lim _{x \rightarrow 1} \frac{x^{10}-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{\left(x^{10}-1\right) /(x-1)}{\left(x^{2}-1\right) /(x-1)}
$$

We could calculate $\left(x^{10}-1\right) /(x-1)$ using long division, but that's a long calculation. We can find this limit more quickly using calculus.

We've used calculus to understand a fraction in indeterminate form when we studied the difference quotient. If $f(x)=x^{10}-1$, then $f(1)=0$ and the difference quotient is:

$$
\frac{f(x)-f(1)}{(x-1)}=\frac{x^{10}-1}{x-1}
$$

We know from our studies of difference quotients that:

$$
\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{(x-1)}=f^{\prime}(1)
$$

We conclude that:

$$
\lim _{x \rightarrow 1} \frac{x^{10}-1}{x-1}=f^{\prime}(1)=10
$$

Our expression:

$$
\frac{x^{10}-1}{x^{2}-1}=\frac{\left(x^{10}-1\right) /(x-1)}{\left(x^{2}-1\right) /(x-1)}
$$

describes a ratio of difference quotients, so if $g(x)=x^{2}-1$ this line of reasoning tells us that:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{10}-1}{x^{2}-1} & =\lim _{x \rightarrow 1} \frac{\left(x^{10}-1\right) /(x-1)}{\left(x^{2}-1\right) /(x-1)} \\
& =\frac{\lim _{x \rightarrow 1}\left(\left(x^{10}-1\right) /(x-1)\right)}{\lim _{x \rightarrow 1}\left(\left(x^{2}-1\right) /(x-1)\right)} \\
& =\frac{f^{\prime}(1)}{g^{\prime}(1)} \\
& =\frac{10}{2} \\
& =5
\end{aligned}
$$

Dividing by $x-1$ and interpreting the fraction as a ratio of difference quotients enabled us to solve the problem by taking two easy derivatives and saved us from a lengthy exercise in long division.

MIT OpenCourseWare
http://ocw.mit.edu

18.01SC Single Variable Calculus] []

Fall 2010 ㅁ

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

