18.014 Problem Set 9 Solutions

Total: 24 points

Problem 1: Integrate
(a)

$$
\int \frac{d x}{\left(x^{2}-4 x+4\right)\left(x^{2}-4 x+5\right)}
$$

(b)

$$
\int \frac{d x}{x^{4}-2 x^{2}}
$$

Solution (4 points) (a) We use the method of partial fractions to write

$$
\frac{1}{(x-2)^{2}\left(x^{2}-4 x+5\right)}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{(C x+D)}{x^{2}-4 x+5} .
$$

Making a common denominator yields the expression

$$
A(x-2)\left(x^{2}-4 x+5\right)+B\left(x^{2}-4 x+5\right)+(C x+D)(x-2)^{2}=1
$$

Plugging in $x=2$, we get $B=1$. Taking the derivative and plugging in $x=2$ yields $A=0$. Solving for C and D, we have $\left(x^{2}-4 x+5\right)+(C x+D)(x-2)^{2}=1$. Comparing x^{3} terms, we see $C=0$. Comparing x^{2} terms, we see $D=-1$. Thus, we have

$$
\int \frac{d x}{\left(x^{2}-4 x+4\right)\left(x^{2}-4 x+5\right)}=\int \frac{d x}{(x-2)^{2}}-\int \frac{d x}{x^{2}-4 x+5} .
$$

(Give yourself a pat on the back if you noticed from the start that the terms $x^{2}-4 x+5$ and $x^{2}-4 x-4$ differed by 1 and got this decomposition without solving for A, B, C, and D).
Now the first integral is $-(x-2)^{-1}+C$. To do the second integral, we complete the square and substitute $u=x-2$

$$
\int \frac{d x}{x^{2}-4 x+5}=\int \frac{d x}{(x-2)^{2}+1}=\int \frac{d x}{u^{2}+1}=\arctan u+C=\arctan (x-2)+C .
$$

Thus, our final answer is

$$
\int \frac{d x}{\left(x^{2}-4 x+4\right)\left(x^{2}-4 x+5\right)}=-(x-2)^{-1}-\arctan (x-2)+C .
$$

(b) Hopefully, after doing part (a), everyone observed

$$
\frac{1}{x^{2}\left(x^{2}-2\right)}=\frac{1}{2}\left(\frac{1}{x^{2}-2}-\frac{1}{x^{2}}\right) \text { and } \frac{1}{x^{2}-2}=\frac{1}{2 \sqrt{2}}\left(\frac{1}{x-\sqrt{2}}-\frac{1}{x+\sqrt{2}}\right) .
$$

If not, one can figure this out using partial fractions. Now, we have

$$
\begin{gathered}
\int \frac{d x}{x^{4}-2 x^{2}}=\int\left(\frac{1}{4 \sqrt{2}}\left(\frac{1}{x-\sqrt{2}}-\frac{1}{x+\sqrt{2}}\right)-\frac{1}{2 x^{2}}\right) d x \\
\quad=\left(\frac{1}{4 \sqrt{2}}(\log |x-\sqrt{2}|-\log |x+\sqrt{2}|)+\frac{1}{2 x}\right)+C
\end{gathered}
$$

Problem 2: Let $A=\int_{0}^{1} \frac{e^{t}}{t+1} d t$. Express the values of the following integrals in terms of A :
(a) $\int_{a-1}^{a} \frac{e^{-t}}{t-a-1} d t$
(b) $\int_{0}^{1} \frac{t e^{t^{2}}}{t^{2}+1} d t$
(c) $\int_{0}^{1} \frac{e^{t}}{(t+1)^{2}} d t$ (d) $\int_{0}^{1} e^{t} \log (1+t) d t$.

Solution (4 points) For part (a), we substitute $t=-u+a$ to get

$$
-\int_{1}^{0} \frac{e^{u-a}}{-u-1} d u=-e^{-a} \int_{0}^{1} \frac{e^{u}}{u+1} d u=-e^{-a} A
$$

For part (b), we substitute $u=t^{2}$ to get

$$
\frac{1}{2} \int_{0}^{1} \frac{e^{u}}{u+1} d u=\frac{1}{2} A
$$

For part (c), we integrate by parts to get

$$
-\left.\frac{e^{t}}{(t+1)}\right|_{0} ^{1}+\int_{0}^{1} \frac{e^{t}}{t+1} d t=-\frac{e}{2}+1+A
$$

For part (d), we integrate by parts to get

$$
\left.e^{t} \log (1+t)\right|_{0} ^{1}-\int_{0}^{1} \frac{e^{t}}{1+t} d t=e \log (2)-A
$$

Problem 3: Let $F(x)=\int_{0}^{x} f(t) d t$. Determine a formula (or formulas) for computing $F(x)$ for all real x if f is defined as follows:
(a) $f(t)=(t+|t|)^{2}$.
(b) $f(t)=\left\{\begin{array}{lll}1-t^{2} & \text { if } & |t| \leq 1 \\ 1-|t| & \text { if } & |t|>1\end{array}\right\}$
(c) $f(t)=e^{-|t|}$.
(d) $f(t)=\max \left\{1, t^{2}\right\}$.

Solution (4 points) (a) If $t \leq 0$, then $f(t)=0$. If $t \geq 0$, then $f(t)=4 t^{2}$. Hence, if $x \leq 0$ then $F(x)=0$, and if $x \geq 0$ then

$$
F(x)=4 \int_{0}^{x} t^{2} d t=\frac{4}{3} x^{3}
$$

(b) If $x \leq-1$, then

$$
\begin{aligned}
F(x)=\int_{0}^{x} f(t) d t & =\int_{0}^{-1}\left(1-t^{2}\right) d t+\int_{-1}^{x}(1+t) d t=\left.\left(t-\frac{t^{3}}{3}\right)\right|_{0} ^{-1}+\left.\left(t+\frac{t^{2}}{2}\right)\right|_{-1} ^{x} \\
& =-1+\frac{1}{3}+x+\frac{x^{2}}{2}+1-\frac{1}{2}=-\frac{1}{6}+x+\frac{x^{2}}{2}
\end{aligned}
$$

If $-1 \leq x \leq 1$, then

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x}\left(1-t^{2}\right) d t=\left.\left(t-\frac{t^{3}}{3}\right)\right|_{0} ^{x}=x-\frac{x^{3}}{3}
$$

If $1 \leq x$, then

$$
\begin{aligned}
F(x)=\int_{0}^{x} f(t) d t & =\int_{0}^{1}\left(1-t^{2}\right) d t+\int_{1}^{x}(1-t) d t=\left.\left(t-\frac{t^{3}}{3}\right)\right|_{0} ^{1}+\left.\left(t-\frac{t^{2}}{2}\right)\right|_{1} ^{x} \\
& =1-\frac{1}{3}+x-\frac{x^{2}}{2}-1+\frac{1}{2}=\frac{1}{6}+x-\frac{x^{2}}{2}
\end{aligned}
$$

(c) If $x \geq 0$, then

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{x}=-e^{-x}+1
$$

If $x \leq 0$, then

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} e^{t} d t=\left.e^{t}\right|_{0} ^{x}=e^{x}-1
$$

(d) Note $t^{2} \leq 1$ if $|t| \leq 1$ and $t^{2} \geq 1$ if $|t| \geq 1$. Hence, $f(t)=1$ if $|t| \leq 1$ and $f(t)=t^{2}$ if $|t| \geq 1$. Thus, for $x \leq-1$, we have

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{-1} d t+\int_{-1}^{x} t^{2}=-1+\frac{x^{3}}{3}+\frac{1}{3}=\frac{x^{3}}{3}-\frac{2}{3}
$$

For $-1 \leq x \leq 1$, we have

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} d t=x
$$

And for $x \geq 1$, we have

$$
F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{1} d t+\int_{1}^{x} t^{2} d t=1+\frac{x^{3}}{3}-\frac{1}{3}=\frac{2}{3}+\frac{x^{3}}{3} .
$$

Problem 4: Use Taylor's formula to show

$$
\begin{equation*}
\sin (x)=\sum_{k=1}^{n} \frac{(-1)^{k-1} x^{2 k-1}}{(2 k-1)!}+E_{2 n}(x), \text { where }\left|E_{2 n}(x)\right| \leq \frac{|x|^{2 n-1}}{(2 n+1)!} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\cos (x)=\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k}}{(2 k)!}+E_{2 n+1}(x), \text { where }\left|E_{2 n+1}(x)\right| \leq \frac{|x|^{2 n+2}}{(2 n+2)!} \tag{b}
\end{equation*}
$$

Solution (4 points) (a) By Taylor's formula (Theorem 7.6), we know

$$
\sin (x)=\sum_{l=0}^{2 n} \frac{\left(\sin ^{(l)}(0)\right) x^{l}}{l!}+E_{2 n}(x)
$$

Note $\sin ^{2 l}(0)= \pm \sin (0)=0, \sin ^{4 l+1}(0)=\cos (0)=1$, and $\sin ^{4 l+3}(0)=-\cos (0)=$ -1 . Thus, our sum becomes $\sum_{k=1}^{n} \frac{(-1)^{k-1} x^{2 k-1}}{(2 k-1)!}$. To approximate the error term, we use theorem 7.7 to conclude

$$
\left|E_{2 n}(x)\right| \leq M \frac{|x|^{2 n+1}}{(2 n+1)!} \text { where } M=\sup _{|c| \leq|x|}\left|\sin ^{(2 n+1)}(c)\right| \text {. }
$$

Since $\sin ^{(2 n+1)}(c)= \pm \cos (c)$, we observe $|M| \leq 1$, and the bound for our error term becomes $\left|E_{2 n}(x)\right| \leq \frac{|x|^{2 n+1}}{(2 n+1)!}$ as desired.
(b) This time we observe $\cos ^{(2 l+1)}(0)= \pm \sin (0)=0, \cos ^{(4 l)}(0)=\cos (0)=1$, and $\cos ^{(4 l+2)}(0)=-\cos (0)=-1$. Plugging this into Taylor's formula yields

$$
\cos (x)=\sum_{k=0}^{n} \frac{(-1)^{k} x^{2 k}}{(2 k)!}+E_{2 n+1}(x)
$$

To approximate the error term, we again use theorem 7.7 together with the bound $\left|\cos ^{(l)}(c)\right| \leq 1$ for all l. This yields the estimate $\left|E_{2 n+1}(x)\right| \leq \frac{|x|^{2 n+2}}{(2 n+2)!}$.

Problem 5: Evaluate the following limits:
(a) $\lim _{x \rightarrow 0} \frac{x\left(e^{x}+1\right)-2\left(e^{x}-1\right)}{x^{3}}$
(b) $\lim _{x \rightarrow 0} \frac{\log (1+x)-x}{1-\cos (x)}$.

Solution (4 points) (a) We apply L'Hopital's rule (Theorem 7.9). Observe that both the numerator and the denominator are differentiable and take the value zero at 0 . We observe $\frac{d}{d x}\left(x\left(e^{x}+1\right)-2\left(e^{x}-1\right)\right)=x e^{x}-e^{x}+1$ and $\frac{d}{d x} x^{3}=3 x^{2}$. Each of these functions is differentiable and takes the value zero at 0 . Differentiating again, we get $\frac{d}{d x}\left(x e^{x}-e^{x}+1\right)=x e^{x}$ and $\frac{d}{d x}\left(3 x^{2}\right)=6 x$. Both of these functions are differentiable and take the value zero at 0 . Finally, we differentiate both functions one more time to get $\frac{d}{d x}\left(x e^{x}\right)=e^{x}+x e^{x}$ and $\frac{d}{d x}(6 x)=6$. Applying L'Hoptal's rule three times, we get

$$
\lim _{x \rightarrow 0} \frac{x\left(e^{x}+1\right)-2\left(e^{x}-1\right)}{x^{3}}=\lim _{x \rightarrow 0} \frac{e^{x}+x e^{x}}{6}=\frac{1}{6} .
$$

The last equality comes from observing that the numerator and denominator are continuous functions and plugging in $x=0$.
(b) Again, we use L'Hopital's rule (Theorem 7.9). Observe that both the numerator and denominator are differentiable at 0 and take the value zero at 0 . Computing, we get $\frac{d}{d x}(\log (1+x)-x)=\frac{1}{(1+x)}-1$ and $\frac{d}{d x}(1-\cos (x))=\sin (x)$. Both of these functions are differentiable at 0 and take the value zero at 0 . Computing again, we get $\frac{d}{d x}\left(\frac{1}{1+x}-1\right)=-\frac{1}{(1+x)^{2}}$ and $\frac{d}{d x} \sin (x)=\cos (x)$. Applying L'Hopital's rule twice, we get

$$
\lim _{x \rightarrow 0} \frac{\log (1+x)-x}{1-\cos (x)}=\lim _{x \rightarrow 0} \frac{-1 /(1+x)^{2}}{\cos (x)}=-1 .
$$

The last equality comes from observing that the numerator and denominator are both continuous at zero and plugging in $x=0$.

Problem 6: (a) Compute the limit

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-x e^{x^{2}}+7 x^{3} / 6}{\sin ^{2}(x) \sin \left(x^{3}\right)}
$$

(b) Show that if $|x|<1$, then

$$
\left|e^{x}-\left(1+x+x^{2} / 2\right)\right| \leq\left|x^{3} / 2\right|
$$

(c) Show that if $|t|<1$, then the approximation

$$
\int_{0}^{t} e^{x^{2}} d x \sim t+\frac{t^{3}}{3}+\frac{t^{5}}{5}
$$

involves an error in absolute value no more than $\left|t^{7} / 14\right|$.
Solution (4 points) For part (a), we apply L'Hopital's rule four times. Let $f(x)=$ $\sin (x)-x e^{x^{2}}+7 x^{3} / 6$ be the numerator and let $g(x)=\sin ^{2}(x) \sin \left(x^{3}\right)$ be the denominator. Note $f^{\prime}(x)=\cos (x)-e^{x^{2}}-2 x^{2} e^{x^{2}}+7 x^{2} / 2$, $f^{\prime \prime}(x)=-\sin (x)-$ $6 x e^{x^{2}}-4 x^{3} e^{x^{2}}+7 x, f^{\prime \prime \prime}(x)=-\cos (x)-6 e^{x^{2}}-24 x^{2} e^{x^{2}}-8 x^{4} e^{x^{2}}+7, f^{(4)}(x)=$ $\sin (x)-60 x e^{x^{2}}+x^{3}\left(f_{1}(x)\right)$, and $f^{(5)}(x)=\cos (x)-60 e^{x^{2}}+x\left(f_{2}(x)\right)$. One sees that f is 5 times differentiable at $0, f^{(k)}(0)=0$ for $k=0,1, \ldots, 4$, and $f^{(5)}(0)=-59$.
Next, we write $g(x)=h_{1}(x) h_{2}(x)$ where $h_{1}(x)=\sin ^{2}(x)$ and $h_{2}(x)=\sin \left(x^{3}\right)$. We leave it as exercise to the reader to verify by induction that

$$
g^{(n)}(x)=\sum_{k=0}^{n}\binom{n}{k} h_{1}^{(k)}(x) h_{2}^{(n-k)}(x)
$$

Now, we compute $h_{1}^{\prime}(x)=2 \sin (x) \cos (x), h_{1}^{\prime \prime}(x)=2\left(\cos ^{2}(x)-\sin ^{2}(x)\right), h_{2}^{\prime}(x)=$ $3 x^{2} \cos \left(x^{3}\right), h_{2}^{\prime \prime}(x)=6 x \cos \left(x^{3}\right)-9 x^{4} \sin \left(x^{3}\right)$, and $h_{2}^{\prime \prime \prime}(x)=6 \cos \left(x^{3}\right)-18 x^{3} \sin \left(x^{3}\right)-$ $36 x^{3} \sin \left(x^{3}\right)-27 x^{6} \cos \left(x^{3}\right)$. Note $h_{1}(0)=h_{1}^{\prime}(0)=h_{2}(0)=h_{2}^{\prime}(0)=h_{2}^{\prime \prime}(0)=0$. These facts together with the above formula prove that $h^{(k)}(x)=0$ for $k=0, \ldots, 4$. Note $h_{1}^{\prime \prime}(0)=2, h_{2}^{\prime \prime \prime}(0)=6$. Thus, we get $g^{(5)}=120$.
Applying L'Hopital's rule 5 times, we end up with

$$
\lim _{x \rightarrow 0} \frac{\sin (x)-x e^{x^{2}}+7 x^{3} / 6}{\sin ^{2}(x) \sin \left(x^{3}\right)}=-\frac{59}{120} .
$$

(b) By Taylor's theorem, we know $e^{x}=1+x+x^{2} / 2+E_{3}$ where $E_{3}=\frac{x^{3}}{6} e^{c}$ for some c between 0 and x. If $|x| \leq 1$, then $|c| \leq 1$ and $e^{c} \leq e$ because e^{t} is an increasing function of t. Since $e \leq 3$, we have $\left|E_{3}\right| \leq \frac{x^{3}}{2}$ as desired.
(c) Plugging in x^{2} in our formula from part (b), we get that $e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+E_{3}$ where $\left|E_{3}\right| \leq \frac{x^{6}}{2}$ whenever $|x| \leq 1$. Integrating, we get

$$
\left|\int_{0}^{t} e^{x^{2}} d x-\left(t+\frac{t^{3}}{3}+\frac{t^{5}}{10}\right)\right| \leq \frac{t^{7}}{14}
$$

whenever $|t| \leq 1$. Note that we used the comparison theorem for integrals to bound $\left|\int_{0}^{t} E_{3}(x) d x\right|$.

Bonus: Give an example of an infinitely differentiable function f such that f is not identically zero but $T_{n} f=0$ for all n. Here $T_{n} f$ denotes the nth Taylor polynomial of f centered at zero.

Solution (4 points) Consider the function

$$
f(x)=\left\{\begin{array}{ll}
e^{-1 / x^{2}} & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{array}\right\}
$$

Clearly f is infinitely differentiable on the interval $(-\infty, 0)$. To show that $f(x)$ is infinitely differentiable on the interval $(0, \infty)$, we show by induction on n that f is n times differentiable for $x>0$ and $f^{(n)}(x)=p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}$ for some polynomial p_{n} whenever $x>0$. . The base case $n=0$ follows from the definition of f. For the inductive step, we assume $f^{(n)}(x)=p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}$ and we show that there exists a polynomial p_{n+1} such that $f^{(n+1)}(x)=p_{n+1}\left(\frac{1}{x}\right) e^{-1 / x^{2}}$.
To do this, we simply differentiate $f^{(n)}(x)=p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}$. By the chain rule and the product rule,

$$
f^{(n+1)}(x)=-p_{n}^{\prime}\left(\frac{1}{x}\right) \cdot \frac{1}{x^{2}} \cdot e^{1 / x^{2}}-2 p_{n}\left(\frac{1}{x}\right) \cdot \frac{1}{x^{3}} \cdot e^{-1 / x^{2}} .
$$

Setting $p_{n+1}(t)=-t^{2} p_{n}^{\prime}(t)-2 t^{3} p_{n}(t)$ completes the inductive step.
In particular, we have shown that $f(x)$ is infinitely differentiable on the interval $(0, \infty)$. It remains to show that f is infinitely differentiable at 0 . We need a lemma.

Lemma: If p is a polynomial, then

$$
\lim _{x \rightarrow 0} p\left(\frac{1}{x}\right) e^{-1 / x^{2}}=0
$$

Proof: Given $\epsilon>0$, we must find $\delta>0$ such that $|x|<\delta$ implies $\left|p\left(\frac{1}{x}\right) e^{-1 / x^{2}}\right|<\epsilon$. Put $t=1 / x$, and let $p(t)=\sum_{k=0}^{n} c_{k} t^{k}$. Then $|p(t)| \leq(n+1) \max _{k=0}^{n}\left\{\left|c_{k}\right|\right\}|t|^{n}$ if $t \geq 1$. Note that $e^{t^{2}} \geq \sum_{k=0}^{m} \frac{t^{2 k}}{k!}$ by Taylor's formula (Theorem 7.6) and the bound on the error term (Theorem 7.7) together with the fact that the derivative of $e^{t^{2}}$ is never negative. If we choose $2 m>n$, then we see that $e^{t^{2}} \geq \frac{t^{2 m}}{(2 m)!}$ and if $t>\frac{1}{\epsilon}(n+1) \max _{k=0}^{n}\left\{\left|c_{k}\right|\right\}=\frac{1}{\delta}$, we conclude that

$$
\frac{e^{t^{2}}}{|p(t)|}>\frac{1}{\epsilon}
$$

Plugging in $t=1 / x$ and taking the inverse of the above equality, we note that

$$
\left|p\left(\frac{1}{x}\right)\right| e^{-1 / x^{2}}<\epsilon
$$

whenever $x<\delta$. This proves the lemma.
Back to showing that $f^{(n)}$ is differentiable at $x=0$ for every n. Since $f^{(n)}(x)=$ $p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}$, we note that

$$
\lim _{x \rightarrow 0^{+}} \frac{f^{(n)}(x)-0}{x}=\lim _{x \rightarrow 0^{+}} q_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}
$$

Here $q_{n}(t)=t p_{n}(t)$. By the lemma, the above limit is zero. Since the limit from the right is obviously zero, we conclude that $f^{(n)}$ is differentiable at zero with derivative zero for all n.
Finally, $T_{n} f=f^{(n)}(0) x^{n} / n$! by definition. Since $f^{(n)}=0$ for all n, we have $T_{n} f=0$ for all n. However, f is not identically zero. For instance, $f(1)=1 / e$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

