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18.014 Problem Set 9 Solutions 
Total: 24 points


Problem 1: Integrate 
(a) � 

dx 
. 

(x2 − 4x + 4)(x2 − 4x + 5) 

(b) � 
dx 

. 
4 2x − 2x

Solution (4 points) (a) We use the method of partial fractions to write 

1 A B (Cx + D) 
= + + . 

(x − 2)2(x2 − 4x + 5) x − 2 (x − 2)2 x2 − 4x + 5 

Making a common denominator yields the expression 

A(x − 2)(x 2 − 4x + 5) + B(x 2 − 4x + 5) + (Cx + D)(x − 2)2 = 1. 

Plugging in x = 2, we get B = 1. Taking the derivative and plugging in x = 2 
yields A = 0. Solving for C and D, we have (x2 − 4x + 5) + (Cx + D)(x − 2)2 = 1. 
Comparing x3 terms, we see C = 0. Comparing x2 terms, we see D = −1. Thus, 
we have 

dx dx dx 
2 2 2(x − 4x + 4)(x − 4x + 5) 

= 
(x − 2)2 

− 
x − 4x + 5 

. 

(Give yourself a pat on the back if you noticed from the start that the terms x2−4x+5 
and x2 − 4x − 4 differed by 1 and got this decomposition without solving for A,B,C, 
and D). 
Now the first integral is −(x − 2)−1 + C. To do the second integral, we complete 
the square and substitute u = x − 2 

dx dx dx 
x2 − 4x + 5 

= 
(x − 2)2 + 1 

= 
u2 + 1 

= arctan u + C = arctan (x − 2) + C. 

Thus, our final answer is 

dx 
(x2 − 4x + 4)(x2 − 4x + 5) 

= −(x − 2)−1 − arctan (x − 2) + C. 
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(b) Hopefully, after doing part (a), everyone observed 

1 1 1 1 1 1 1 1 
2 2 2 2x2(x − 2)

= 
2 x − 2 

− 
x

and 
x

=
2
√

2 x −
√

2 
− 

x + 
√

2 
. 

− 2 

If not, one can figure this out using partial fractions. Now, we have � � � � � � 
dx 1 1 1 1 

x4 − 2x2 
=

4
√

2 x −
√

2 
− 

x + 
√

2 
− 

2x2 
dx 

=
4
√1 

2 
log |

√
2| − log |x + 

√
2| + 

2

1 
x 

+ C. x − 

� 1 t 
Problem 2: Let A = e dt. Express the values of the following integrals in 

0 t+1 
terms of A:� a � 1 � 1 t � 1
e−t tet2 

e

(a) dt (b) dt (c) dt (d) e t log(1 + t)dt. 

a−1 t − a − 1 0 t2 + 1 0 (t + 1)2
0 

Solution (4 points) For part (a), we substitute t = −u + a to get � 0 � 1 ueu−a e− 
1 −u − 1 

du = −e−a 

0 u + 1 
du = −e−aA. 

For part (b), we substitute u = t2 to get � 1 u1 e 1 
du = A. 

2 0 u + 1 2 

For part (c), we integrate by parts to get 

t � � 1 te �1 e e −
(t + 1) 

� 
0 
+ 

0 t + 1 
dt = −

2 
+ 1 + A. 

For part (d), we integrate by parts to get � � 1 t 

e t log(1 + t)��1
0 
− 

0 

e
dt = e log(2) − A. 

1 + t 

x
Problem 3: Let F (x) = 

0 f(t)dt. Determine a formula (or formulas) for comput
ing F (x) for all real x if f is defined as follows: 
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)2(a) f(t) = (t + |t|
1 − t2 

.

if t ≤ 1|

t
| 
> 1| |(b) f(t) = 

1 − |t| if 
(c) f(t) = e−|t|. 
(d) f(t) = max{1, t2}. 

Solution (4 points) (a) If t ≤ 0, then f(t) = 0. If t ≥ 0, then f(t) = 4t2 . Hence, if 
x ≤ 0 then F (x) = 0, and if x ≥ 0 then 

x 4 
F (x) = 4 t2dt = x 3 . 

30 

(b) If x ≤ −1, then 

x −1 t3 −1 
+ t +


t2 x 

3 0 2 −1 

x 
2)dt +F (x) = f(t)dt = (1 − t
 (1 + t)dt = t −


0 0 −1 

1 x2 1 1 x2 

= −1 + + x + + 1 − + x + .= −
3 2 2 6 2 

If −1 ≤ x ≤ 1, then

x x t3 3x x

F (x) = f(t)dt = (1 − t2)dt = t −
0 0 

.= x − 
33
 0 

If 1 ≤ x, then 

x � 1 x t3 t21 x 
F (x) = f(t)dt = (1 − t2)dt + (1 − t)dt = t −

0 0 1 
+ t −


3
 2
0 1 

1 x2 1 1 x2 

= 1 − + x − − 1 + = + x − . 
3 2 2 6 2 

(c) If x ≥ 0, then

x x x 

e−tdt = −e−t = −e−x + 1.F (x) = f(t)dt =

00 0 

If x ≤ 0, then


e
tdt = e t 
x x 

F (x) = f(t)dt =

x 

x − 1.
= e 
00 0 

(d) Note t2 ≤ 1 if |t| ≤ 1 and t2 ≥ 1 if |t| ≥ 1. Hence, f(t) = 1 if |t| ≤ 1 and 
f(t) = t2 if ≥ 1. Thus, for x ≤ −1, we have |t|


F (x) = f(t)dt = dt + 
−1 3 3x x 1
 2
x
 x
2 = −1 +
t


3 
+

3
= 

3 
− 

3 
.


0 0 −1 
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For −1 ≤ x ≤ 1, we have 

x x 

F (x) = f(t)dt = dt = x. 
0 0 

And for x ≥ 1, we have � x � 1 � x 3 3x 1 2 x
F (x) = f(t)dt = dt + t2dt = 1 + 

3 
− 

3
=

3
+ 

3 
. 

0 0 1 

Problem 4: Use Taylor’s formula to show 
(a) 

n� (−1)k−1x2k−1 x 2n−1 

sin(x) = 
(2k − 1)! 

+ E2n(x), where |E2n(x)| ≤ 
(2

|
n 
|
+ 1)! 

. 
k=1 

(b) 
n� (−1)kx2k x 2n+2 

cos(x) = 
(2k)! 

+ E2n+1(x), where |E2n+1(x)| ≤ 
(2

|
n 
|
+ 2)! 

. 
k=0 

Solution (4 points) (a) By Taylor’s formula (Theorem 7.6), we know 

2n l� (sin(l)(0))x
sin(x) = + E2n(x). 

l! 
l=0 

Note sin2l(0) = ± sin(0) = 0, sin4l+1(0) = cos(0) = 1, and sin4l+3(0) = − cos(0) = 
2k−1 

−1. Thus, our sum becomes 
� 

k
n 
=1 

(−1)
(2

k

k

−

−
1

1)! 
x . To approximate the error term, we 

use theorem 7.7 to conclude 
2n+1 

|E2n(x)| ≤ M 
(2

|x
n 
|
+ 1)! 

where M = sup | sin(2n+1)(c)|. 
|c|≤|x| 

Since sin(2n+1)(c) = ± cos(c), we observe M ≤ 1, and the bound for our error term 
2n+1 

| |
becomes | (x)| ≤ |x| as desired. E2n (2n+1)! 

(b) This time we observe cos(2l+1)(0) = ± sin(0) = 0, cos(4l)(0) = cos(0) = 1, 
and cos(4l+2)(0) = − cos(0) = −1. Plugging this into Taylor’s formula yields 

n 2k� (−1)kx
cos(x) = + E2n+1(x). 

(2k)!
k=0 
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To approximate the error term, we again use theorem 7.7 together with the bound 
| cos(l)(c)| ≤ 1 for all l. This yields the estimate |E2n+1(x)| ≤ |x|

2n+2 

.
(2n+2)! 

Problem 5: Evaluate the following limits: 
x(ex + 1) − 2(ex − 1) log(1 + x) − x 

(a) lim (b) lim . 
x 0 x3 x 0 1 − cos(x)→ →

Solution (4 points) (a) We apply L’Hopital’s rule (Theorem 7.9). Observe that 
both the numerator and the denominator are differentiable and take the value zero 

d x x d 3 2at 0. We observe 
dx (x(ex + 1) − 2(e − 1)) = xe − ex + 1 and 

dx x = 3x . Each 
of these functions is differentiable and takes the value zero at 0. Differentiating 
again, we get d (xex x + 1) = xex and d (3x2) = 6x. Both of these functions are 

dx − e
dx 

differentiable and take the value zero at 0. Finally, we differentiate both functions 
d x done more time to get 
dx (xex) = ex + xe and 

dx (6x) = 6. Applying L’Hoptal’s rule 
three times, we get 

x(ex + 1) − 2(ex − 1) ex + xex 1 
lim = lim = . 
x 0 x3 x 0 6 6→ →

The last equality comes from observing that the numerator and denominator are 
continuous functions and plugging in x = 0. 

(b) Again, we use L’Hopital’s rule (Theorem 7.9). Observe that both the numerator 
and denominator are differentiable at 0 and take the value zero at 0. Computing, 
we get d (log(1 + x) − x) = 

(1+
1 
x) − 1 and d (1 − cos(x)) = sin(x). Both of these 

dx dx 
functions are differentiable at 0 and take the value zero at 0. Computing again, we 
get d ( 1 − 1) = − 1 and d sin(x) = cos(x). Applying L’Hopital’s rule twice, 

dx 1+x (1+x)2 dx 
we get 

lim 
log(1 + x) − x 

= lim 
−1/(1 + x)2 

= −1. 
x 0 1 − cos(x) x 0 cos(x)→ →

The last equality comes from observing that the numerator and denominator are 
both continuous at zero and plugging in x = 0. 

Problem 6: (a) Compute the limit 

sin(x) − xex2 
+ 7x3/6 

lim 
x→0 sin2(x) sin(x3) 

(b) Show that if |x| < 1, then 

2/2 x
3/2x − 1 + x + x ≤
e
 .
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(c) Show that if t < 1, then the approximation
|
 |

t t3 t5 

2 
e x dx ∼ t + + 

3 50 

involves an error in absolute value no more than |t7/14|. 

Solution (4 points) For part (a), we apply L’Hopital’s rule four times. Let f(x) = 
xsin(x) − xe
2 

+ 7x3/6 be the numerator and let g(x) = sin2(x) sin(x3) be the de
nominator. Note f �(x) = cos(x) − ex2 − 2x2ex2 

+ 7x2/2, f ��(x) = − sin(x) −
6xex2 − 4x3ex2 

+ 7x, f ���(x) = − cos(x) − 6ex2 − 24x2ex2 − 8x4ex2 
+ 7, f (4)(x) = 

x xsin(x) − 60xe
2 
+ x3(f1(x)), and f (5)(x) = cos(x) − 60e

2 
+ x(f2(x)). One sees that 

f is 5 times differentiable at 0, f (k)(0) = 0 for k = 0, 1, . . . , 4, and f (5)(0) = −59. 
Next, we write g(x) = h1(x)h2(x) where h1(x) = sin2(x) and h2(x) = sin(x3). We 
leave it as exercise to the reader to verify by induction that 

n
n

h
(k)

(x)h
(
2 
n−k)

g
(n)(x) = (x).
1k 
k=0 

Now, we compute h�1(x) = 2 sin(x) cos(x), h��1 (x) = 2 cos2(x) − sin2(x) , h�2(x) = 
3x2 cos(x3), h��(x) = 6x cos(x3) − 9x4 sin(x3), and h���(x) = 6 cos(x3) − 18x3 sin(x3) −2 2 

36x3 sin(x3) − 27x6 cos(x3). Note h1(0) = h�1(0) = h2(0) = h�2(0) = h��(0) = 0. These 2

facts together with the above formula prove that h(k)(x) = 0 for k = 0, . . . , 4. Note 
h��1 (0) = 2, h���2 (0) = 6. Thus, we get g(5) = 120. 
Applying L’Hopital’s rule 5 times, we end up with 

xsin(x) − xe
2 
+ 7x3/6 59 

lim . 
x→0 sin2(x) sin(x3)

= −
120 

x x c(b) By Taylor’s theorem, we know e = 1 + x + x2/2 + E3 where E3 = 
6 

3 
e for some 

c between 0 and x. If x ≤ 1, then c ≤ 1 and ec ≤ e because et is an increasing | | | | 
3 

function of t. Since e ≤ 3, we have |E3| ≤ x as desired. 
2 

(c) Plugging in x2 in our formula from part (b), we get that ex2 
= 1 + x2 + x

2 

4 
+ E3 

6 
where |E3| ≤ x

2 whenever |x| ≤ 1. Integrating, we get 

t t3 t5 

+
 ≤

t7 

14

2x dx − t +e


3 10
0 

whenever t ≤ 1. Note that we used the comparison theorem for integrals to bound 
t 

| |
E3(x)dx||
 .
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Bonus: Give an example of an infinitely differentiable function f such that f is not 
identically zero but Tnf = 0 for all n. Here Tnf denotes the nth Taylor polynomial 
of f centered at zero. 

Solution (4 points) Consider the function 

e−1/x2 
if x > 0 

f(x) = . 
0 if x ≤ 0 

Clearly f is infinitely differentiable on the interval (−∞, 0). To show that f(x) is 
infinitely differentiable on the interval (0, ∞), we show by induction on n that f is 
n times differentiable for x > 0 and f (n)(x) = pn(

x 
1 )e−1/x2 

for some polynomial pn 

whenever x > 0. . The base case n = 0 follows from the definition of f . For the 
inductive step, we assume f (n)(x) = pn(

x 
1 )e−1/x2 

and we show that there exists a 
polynomial pn+1 such that f (n+1)(x) = pn+1(x 

1 )e−1/x2 
. 

To do this, we simply differentiate f (n)(x) = pn(
x 
1 )e−1/x2 

. By the chain rule and the 
product rule, 

f (n+1)(x) = −p�n x 
1 · 

x

1 
2 
· e 1/x2 − 2pn 

x 
1 · 

x

1 
3 
· e−1/x2 

. 

Setting pn+1(t) = −t2p� (t) − 2t3pn(t) completes the inductive step. n

In particular, we have shown that f(x) is infinitely differentiable on the interval 
(0, ∞). It remains to show that f is infinitely differentiable at 0. We need a lemma. 

Lemma: If p is a polynomial, then 

lim p 
1 

e−1/x2 
= 0. 

x 0 x→

Proof: Given � > 0, we must find δ > 0 such that x < δ implies p < �.� n 
| | |

x 
1 e−1/x2 | 

nPut t = 1/x, and let p(t) = � k=0 ckt
k . Then |p(t)| ≤ (n + 1) maxn

k=0{|ck|}|t|
t2 m t2k 

if t ≥ 1. Note that e k=0 k! by Taylor’s formula (Theorem 7.6) and the ≥
bound on the error term (Theorem 7.7) together with the fact that the derivative 
of et2 

is never negative. If we choose 2m > n, then we see that et2 

(2
t2

m

m 

)! and if ≥ 

t > 1 
� (n + 1) maxn

k=0{|ck|} = 1 
δ , we conclude that 

et2 
1 

> . 
|p(t)| � 
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Plugging in t = 1/x and taking the inverse of the above equality, we note that


1 
p 

x 
e−1/x2 

< � 

whenever x < δ. This proves the lemma.


Back to showing that f (n) is differentiable at x 
e−1/x2 

= 0 for every n. Since f (n)(x) = 
1 pn x , we note that


f (n)(x) − 0 
= lim qn 

1 
e−1/x2 

lim
 .

x 0+ x x 0+ x→ →

Here qn(t) = tpn(t). By the lemma, the above limit is zero. Since the limit from the 
right is obviously zero, we conclude that f (n) is differentiable at zero with derivative 
zero for all n. 
Finally, Tnf = f (n)(0)xn/n! by definition. Since f (n) = 0 for all n, we have Tnf = 0 
for all n. However, f is not identically zero. For instance, f(1) = 1/e. 
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