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18.014 Problem Set 8 Solutions 
Total: 24 points


Problem 1: Compute � 1 

xf ��(2x)dx 
0 

given that f �� is continuous for all x, and f(0) = 1, f �(0) = 3, f(1) = 5, f �(1) = 2, 
f(2) = 7, f �(2) = 4. 

Solution (4 points) Applying integration by parts (theorem 5.5), we have � 1 

xf �(2x) 
1 1
 1 1
 1 1 1 1

xf ��(2x)dx = f �(2x)dx = f �(2) − f(2) + f(0) =


0 
− .


2
 2
 2
 4
 4
 2
0 

We can use this theorem because x is differentiable with constant derivative 1 that 
is continuous and never changes sign, and f ��(2x) is continuous by hypothesis. 

Problem 2: Use the definition ax = ex log a to derive the following properties of 
general exponentials: 
(b) (ab)x = axbx . 
(c) axay = ax+y. 
(d) (ax)y = (ay)x = axy 

(e) Suppose a > 0, a = 1. Then y = ax if and only if x = loga y. 

Solution (4 points) (b) By the definition of the exponential function, part (ii) of 
theorem 3 of course notes M, part (i) of theorem 2 of course notes M, and the 
definition of the exponential function, we have 

(ab)x = e x log(ab) = e x log(a)+x log(b) = e x log(a)e x log(b) = a xbx . 

(c) By the definition of the exponential function, part (i) of theorem 2 of course 
notes M, and the definition of the exponential function, we have 

x y x log(a) y log(a) (x+y) log(a) x+ya a = e e = e = a . 

(d) After twice using the definition of the exponential function, using that the ex
ponential function and the logarithmic function are inverses, and again using the 
definition of the exponential function, we obtain 

(a x)y = ey log(ax) = ey log(ex log a) = eyx log(a) = axy . 
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The same argument with the roles of x and y interchanged yields 

(ay)x = e x log(ay ) = e x log(ey log a) = exy log(a) = axy. 

Combining the two yields the statement in part (d). 
(e) Suppose y = ax . By the definition of the exponential function, we know y = 
ex log(a). Taking the logarithm of both sides and using that the logarithm and the 
exponential function are inverses, we obtain log(y) = x log(a). Since a = 1, log(a) = 

log(y) 
� �

0. Thus, we may divide by log(a) to get x = 
log(a) . But, this is our definition of 

log y. Writing this argument backwards implies the converse statement. a 

Problem 3: (a) Use integration by parts to deduce the formula 

sin2(x)dx = − sin(x) cos(x) + cos 2(x)dx. 

In the second integral, write cos2(x) = 1 − sin2(x) and thereby deduce the formula 

1 1 
sin2(x)dx = x − sin(2x). 

2 4 

(b) Use integration by parts and the result of part (a) to deduce 

x sin2(x)dx = 
1

4 
x 2 − 

1

4 
x sin(2x) − 

1

8 
cos(2x). 

Solution (4 points) (a) Putting f(x) = g�(x) = sin(x) in formula (5.23) and using 
d sin(x) = cos(x), sin(x) = − cos(x) yields 
dx 

sin2(x)dx = − sin(x) cos(x) + cos 2(x)dx. 

Now, if we substitute cos2(x) = 1 − sin2(x) and use part (e) of theorem 3 of course 
notes L, then our expression becomes 

1 
sin2(x)dx = − sin(2x) + 1dx − sin2(x)dx. 

2 

Integrating 1dx, moving the sin2(x)dx to the other side of the equation, and 
dividing by 2 yields � 

1 1 
sin2(x)dx = − sin(2x) + x. 

4 2 
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(b) Putting f(x) = x and g�(x) = sin2(x) in formula (5.23), we get 

x sin2(x) = x sin2(x) − sin2(x). 

Using part (a), we obtain � � � � � � 
1 1 1 1 

x sin2(x) = x −
4 

sin(2x) + 
2 
x − −

4 
sin(2x) + 

2 
x 

1 1 2 1 
= − x sin(2x) + x cos(2x). 

4 4 
− 

8 

Problem 4: Evaluate the integral 

1 + 3 cos2(x) sin(2x)dx. 

Solution (4 points) Put u = 1 + 3 cos2(x). Then du = −6 cos(x) sin(x)dx = 
−3 sin(2x)dx by part (e) of section L of the course notes. Applying the method 
of substitution, we obtain 

−1 √
udu = 

−2 
u 3/2 . 

3 9 

Plugging back in for u, our answer is 

−2 � 
1 + 3 cos2(x) 

�3/2 
. 

9 

Problem 5: (a) Find a polynomial P (x) such that P �(x) − 3P (x) = 4 − 5x + 3x2 . 
Prove there is only one solution. 
(b) If Q(x) is a given polynomial, prove that there is one and only one polynomial 
P (x) such that P �(x) − 3P (x) = Q(x). 

Solution (4 points) (a) Put P (x) = −x2 + x − 1. Then P �(x) = −2x + 1 and 
P �(x) − 3P (x) = 3x2 − 5x + 4. Note that deg(P �(x) − 3P (x)) = deg P (x); hence 
deg P (x) = 3. If P (x) = ax2 + bx + c, then P �(x) = 2ax + b and 

P �(x) − 3P (x) = −3ax 2 + (2a − 3b)x + (b − 3c) = 3x 2 − 5x + 4. 
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Because there is an unique solution to the equations −3a = 3, 2a − 3b = −5, and 
b − 3c = 4, our solution must be the only one. 

(b) First, we show there is at most one solution to the equation P �(x) − 3P (x) = 
Q(x). If P1 and P2 are two distinct solutions, then P �(x) − 3P1(x) = P �(x) − 3P2(x).1 2

In particular, (P1 − P2)
� = −3(P1 − P2). However, if P1 − P2 is not constant, then 

deg(P1 − P2) + 1 = deg((P1 − P2)
�). Since two polynomials must have the same 

degree if they are equal, we deduce that P1 − P2 is constant. Clearly, this constant 
must be zero and P1 = P2, a contradiction. We conclude that there can be at most 
one solution to our equation. 
Now, we show that there exists a solution to the equation P �(x)−3P (x) = Q(x). We 
proceed by induction on deg Q. For the base case deg Q = 0, we may take P = −1

3 Q. 
Now for the inductive step. Suppose the statement is true for all polynomials Q of 
degree k < n. We will prove the statement for all polynomials Q of degree n. 
Let Q = cnx

n + Q1 be a polynomial of degree n where Q1 is a polynomial of degree 
at most n − 1. Now, by the induction hypothesis, we may find a solution P1 to the 
equation P1

� − 3P1 = Q1 − 
3
1 ncnx

n−1 since Q1 − 
3
1 ncnx

n−1 is a polynomial of degree 
at most n − 1. Let P = P1 − 

3
1 cnx

n . Then 

1 n nP � − 3P = P1
� − 3P1

� − 
3 
ncnx n−1 + cnx = Q1 + cnx = Q. 

The desired result follows. 

Problem 6: Evaluate � 
x4 + 2 

dx. 
x4 + x3 + x2 

Solution (4 points) Note x4 + x3 + x2 = x2(x2 + x + 1). Using partial fractions, we 
observe 

x4 + 2 x3 + x2 − 2 2x − 2 −x + 1 
x4 + x3 + x2 

= 1 − 
x2(x2 + x + 1) 

= 1 − 
x2 

− 
x2 + x + 1 

. 

Note 1 = x, 2x−2 = 2 log |x| + 2x−1 . To evaluate the last term, we write 2x

−x + 1 1 1 1 
x2 + x + 1 

= −
2 

log |x 2 + x + 1| +
2 x2 + x + 1 

. 

Now, we write 
1 1 

x2 + x + 1 
= 

(x + 1
2 )

2 + 3
4 

. 
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Using the identity on the top of page 263, we find 

1 4 4(x + 1
2 ) = arctan . 

(x + 1
2 )

2 + 3
4 

3 3 

Combining all of these terms, we obtain � � 1 � 

x

x4 + 2 
dx = x − 2 log(x) − 2x−1 + 

1

2 
log |x 2 + x +1|− 

2

3 
arctan 

4(x 

3

+ 
2 ) . 

4 + x3 + x2 

Bonus: Let f be a continuous function. Prove that � � �� � �� �� � � � � x x x u2 u1f(u)(x − u)n 

n! 
du = · · · f(t)dt du1 · · · dun . 

0 0 0 0 0 

Solution (4 points) We prove the statement by induction on n. The base case n = 0 
is the tautology � � x x 

f(u)du = f(t)dt. 
0 0 

Now, assume that the statement is true for n − 1. We prove the statement for n. 
Integration by parts yields � x �� u � � � x �� u � 

xf(u)(x − u)n 

= f(t)dt 
(x − u)n �� + f(t)dt 

(x − u)n−1 

. 
n! n! 0 (n − 1)!0 0 0 0 

u
The first term is zero. Define g(u) = 

0 f(t)dt. Then we may apply the inductive 
hypothesis to obtain � � �� � �� � � � x x un u2(x − u)n−1 

g(u) du = g(u1)du1 dun . 
(n − 1)! 

· · · · · · 
0 0 0 0 

Plugging in for g, we get � � �� � �� �� � � � � x x un u2 u1f(u)(x − u)n 

0 n!
= 

0 0 
· · · 

0 0 
f(t)dt du1 · · · dun 

as desired. 
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