18.014 Problem Set 5 Solutions

Total: 24 points

Problem 1: Let $f(x)=x^{4}+2 x^{2}+1$ for $0 \leq x \leq 10$.
(a) Show f is strictly increasing; what is the domain of its inverse function g ?
(b) Find an expression for g, using radicals.

Solution (4 points) (a) Let $0 \leq x<y \leq 10$. Since

$$
y^{4}-x^{4}=(y-x)\left(y^{3}+y^{2} x+y x^{2}+x^{3}\right)>0,
$$

we have $y^{4}>x^{4}$. Similarly, $y^{2}>x^{2}$ since

$$
y^{2}-x^{2}=(y-x)(y+x)>0
$$

Summing, we get

$$
f(y)=y^{4}+2 y^{2}+1>x^{4}+2 x^{2}+1
$$

and f is strictly increasing. Since $f(0)=1, f(10)=10,201$, and f is strictly increasing, the domain of its inverse function g is

$$
\{x \mid 1 \leq x \leq 10,201\}
$$

(b) Observe $g(x)=\sqrt{\sqrt{x}-1}$. It's a good exercise to check that $f(g(x))=g(f(x))=$ x.

Problem 2: (a) Show by example that the conclusion of the extreme value theorem can fail if f is only continuous on $[a, b)$ and bounded on $[a, b]$.
(b) Let $f(x)=x$ for $0 \leq x<1$; let $f(1)=5$. Show that the conclusion of the small span theorem fails for the function $f(x)$.

Solution (4 points) (a) Define $f(x)=x$ if $0 \leq x<1$, and define $f(1)=0$. Let $x \in[0,1]$. We claim $f(x)$ is not a maximum value of the function f on $[0,1]$. If $x=1$, then $f(1)=0$, and 0 is not a maximum of f on $[0,1]$ since $f\left(\frac{1}{2}\right)=\frac{1}{2}>0$. If $x \neq 1$, then define

$$
y=\frac{1+x}{2} .
$$

Note that $f(x)=x<y=f(y)$; hence, $f(x)$ is not a maximum of f on $[0,1]$. We conclude that f has no maximum on $[0,1]$.
(b) Suppose that the conclusion of the small span theorem is true for the function $f(x)$ in part (b). Then given $\epsilon=1$, we can find a partition $0=x_{0}<x_{1}<\cdots<$ $x_{n-1}<x_{n}=1$ of the interval $[0,1]$ such that whenever $x_{i-1} \leq x<y \leq x_{i}$, we have

$$
|f(x)-f(y)|<1
$$

Consider the interval $\left[x_{n-1}, x_{n}\right]=\left[x_{n-1}, 1\right]$, and put $y=1$. For any $x_{n-1} \leq x<1$, we have

$$
|f(x)-f(y)|=|x-5|=5-x>4
$$

since $x<1<5$. This is a contradiction. Thus, the conclusion of the small span theorem fails for this function.

Problem 3: Assume f is continuous on $[a, b]$. Assume also that $\int_{a}^{b} f(x) g(x) d x=0$ for every function g that is continuous on $[a, b]$. Prove that $f(x)=0$ for all x in $[a, b]$.

Solution (4 points) Put $g(x)=f(x)$. Then $\int_{a}^{b} f(x)^{2} d x=0$. Since f is a continuous function, x^{2} is a continuous function, and the composition of continuous functions is continuous, we know $f(x)^{2}$ is a continuous function. Since $f(x)^{2}$ is continuous on the interval $[a, b]$, we know $f(x)^{2}$ is bounded and integrable on the interval $[a, b]$ by Theorem 3.11 and Theorem 3.14. Thus, we may apply problem 7 on page 155, and we get that $f(x)^{2}=0$ for every $x \in[a, b]$. It follows that $f(x)=0$ for all $x \in[a, b]$.

Problem 4: We define a set $A \subset \mathbb{R}$ to be dense in \mathbb{R} if every open interval of \mathbb{R} contains at least one element of A. Let A be a dense subset of \mathbb{R}, and let $f(x)$ be a continuous function such that $f(x)=0$ for all $x \in A$. Prove that $f(x)=0$ for all $x \in \mathbb{R}$.

Solution (4 points) Fix $x \in \mathbb{R}$. To show $f(x)=0$, it is enough to show $|f(x)|<\epsilon$ for any $\epsilon>0$. So fix $\epsilon>0$. Since f is continuous at x, there exists δ such that $y \in(x-\delta, x+\delta)$ implies $|f(y)-f(x)|<\epsilon$. But, the interval $(x-\delta, x+\delta)$ must contain $y \in A$. For this y, we have $f(y)=0$. Hence, $|0-f(x)|<\epsilon$ and $|f(x)|<\epsilon$ as desired.

Problem 5: Let $f(x)$ be a continuous function on $[0,1]$ and fix $w \in \mathbb{R}$. Show that there exists $z \in[0,1]$ such that the distance between $(w, 0)$ and the curve $y=f(x)$ is minimized by $(z, f(z))$.

Solution (4 points) Note that the distance between $(x, f(x))$ and $(w, 0)$ is $g(x)=$ $\sqrt{(x-w)^{2}+f(x)^{2}}$ by the Pythagorean theorem. Observe that $(x-w)^{2}$ is a continuous function because it is a polynomial in $x, f(x)^{2}$ is a continuous function because it is the composition of continuous functions, $(x-w)^{2}+f(x)^{2}$ is continuous because it is the sum of continuous functions, and finally $g(x)=\sqrt{(x-w)^{2}+f(x)^{2}}$ is continuous because it is the composition of continuous functions. Because $g(x)$ is a continuous function on $[0,1]$ it must have a minimum value $z \in[0,1]$ by the extreme value theorem. Hence, $(z, f(z))$ minimizes the distance between the curve $y=f(x)$ and the point $(w, 0)$.

Problem 6: Show that the line $y=-x$ is tangent to the curve given by the equation $y=x^{3}-6 x^{2}+8 x$. Find the point of tangency. Does this tangent line intersect the curve anywhere else?

Solution (4 points) First, we figure out where the curves $y=-x$ and $y=x^{3}-$ $6 x^{2}+8 x$ intersect. Setting them equal yields $-x=x^{3}-6 x^{2}+8 x$. Rearanging and factoring, we get

$$
x(x-3)^{2}=0
$$

Thus, the two curves intersect at $x=3$ and $x=0$.
Next, we determine where the two curves have the same derivative. In the case $y=-x$, we get $\frac{d y}{d x}=-1$. In the case of $y=x^{3}-6 x^{2}+8 x$, we get $\frac{d y}{d x}=3 x^{2}-12 x+8$. Setting these two equal yields

$$
0=3 x^{2}-12 x+9=3(x-3)(x-1)
$$

Thus, the curves share the same slope at $x=1$ and $x=3$. The curve $y=-x$ is tangent to the curve $y=x^{3}-6 x^{2}+8 x$ when the two share the same value and derivative. This happens only at the point $x=3$. The curves also intersect at the point $x=0$, but they do not share the same slope at that point.

Bonus: Define a function f on the interval $[0,1]$ by setting $f(x)=0$ if x is irrational, $f(x)=\frac{1}{n}$ if $x=\frac{m}{n}$ with m and n positive integers having no common factors except one, and $f(0)=1$.
(a) Show that f is integrable on $[0,1]$.
(b) Show that f is continuous at every irrational and discontinuous at every rational.

Solution (4 points) (a) To show that f is integrable on $[0,1]$, we must show that its upper integral $\bar{I}(f)$ and its lower integral $\underline{I}(f)$ agree. We know $\bar{I}(f) \geq \underline{I}(f)$; hence,
we must show the opposite inequality.
First, observe that 0 is a step function and $0 \leq f$ on $[0,1]$. Thus, $0 \leq \underline{I}(f)$. Now, we bound $\bar{I}(f)$ from above. We introduce step functions s_{n} for $n=2,3, \ldots$ as follows.

Fix $n \in \mathbb{P}$, and let

$$
P=\left\{\left.\frac{p}{q} \pm \frac{1}{n^{3}} \in[0,1] \right\rvert\, q<n, p, q \in \mathbb{P}\right\} .
$$

Since the set P is finite, it yields a partition of $[0,1]$. Define $s_{n}(x)=1$ if there exist $p, q \in \mathbb{P}$ with $q<n$ such that $\frac{p}{q}-\frac{1}{n^{3}}<x<\frac{p}{q}+\frac{q}{n^{3}}$. Let $s_{n}(x)=0$ if there do not exist such p and q. Clearly s_{n} is a step function with respect to the partition P.

Observe that for fixed $q<n$, the number of $\frac{p}{q} \in[0,1]$ is at most $q+1$, which is at most n. Moreover, there are less than n positive integers q such that $q<n$. Thus, there exist no more than n^{2} intervals $\left(\frac{p}{q}-\frac{1}{n^{3}}, \frac{p}{q}+\frac{1}{n^{3}}\right)$ in the interval $[0,1]$. Thus, we may bound

$$
\int_{0}^{1} s_{n}(x) \leq n^{2} \frac{1}{n^{3}}=\frac{1}{n}
$$

But, then $\bar{I}(f) \leq \frac{1}{n}$ for all $n \in \mathbb{P}$. By the archimedean property of the reals, this implies that $\bar{I}(f) \leq 0$. Then

$$
0 \leq \underline{I}(f) \leq \bar{I}(f) \leq 0
$$

implies $\underline{I}(f)=\bar{I}(f)=0$ and f is integrable on $[0,1]$.
(b) Let $\alpha \in[0,1]$ be an irrational number. Given $\epsilon>0$, choose $n \in \mathbb{P}$ such that $\frac{1}{n}<\epsilon$. As remarked in part (a), there are finitely many rational numbers $\frac{p}{q} \in[0,1]$ such that $q<n$. Let δ be the minimum of the distances between $\frac{p}{q}$ and α for $q<n$. Since α is irrational, none of these distances are zero; hence, $\delta>0$.

If $|x-\alpha|<\delta$, then there are two options for $f(x)$. If x is irrational, then $f(x)=0$. If x is rational, then $x=\frac{p}{q}$ with p and q having no common factors except one and $q \geq n$, since $|x-\alpha|<\delta$. Thus, $f(x) \leq \frac{1}{n}<\epsilon$. Either way, we get

$$
|f(x)-f(\alpha)|=|f(x)|<\epsilon
$$

We have shown that f is continuous at α.
Next, let $x=\frac{m}{n}$ be a rational number in lowest terms (m and n have no common factors except one). Put $\epsilon=\frac{1}{2 n}$. Assume f is continuous at x. Then there exists $\delta>0$ such that $|y-x|<\delta$ implies $|f(y)-f(x)|<\epsilon$. As remarked above, there are finitely many $\frac{p}{q} \in[0,1]$ with $q \leq n$ and $p, q \in \mathbb{P}$. Hence, there exists a minimal
distance d such that whenever $|y-x|<d$ and $y \neq x$, we cannot have $y=\frac{p}{q}$ with $q<n$. Let $d_{1}=\frac{1}{2} \min \{d, \delta\}$. Then $y=x+d_{1}$ satisfies $|y-x|<\delta$. There are two possibilities for $f(y)$. If y is irrational, then $f(y)=0$. If $y=\frac{p}{q}$ is rational and in lowest terms, then $q>2 n$. Hence, $f(y)<\frac{1}{2 n}$. So regardless of case,

$$
|f(y)-f(x)|=\left|f(y)-\frac{1}{n}\right|>\frac{1}{2 n}=\epsilon
$$

This contradicts our assumption. We conclude that f is not continuous at any rational number.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

