18.014 Problem Set 4 Solutions

Total: 24 points

Problem 1: Establish the following limit formulas. You may assume the formula $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
(a)

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (x)}=5
$$

(b)

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)-\sin (3 x)}{x}=2 .
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}}=\frac{1}{2} .
$$

Solution (4 points)
(a) Using the product formula for limits (Thm. 3.1 part iii), we have

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (x)}=\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x} \frac{5 x}{\sin (x)}=\lim _{x \rightarrow 0} \frac{\sin (5 x)}{5 x} \cdot \lim _{x \rightarrow 0} \frac{5 x}{\sin (x)}=A B
$$

For the first term, note that $5 x$ approaches zero as x approaches zero; hence, $A=1$ by the assumed limit formula. For the second term, note $\lim _{x \rightarrow 0} \frac{5 x}{\sin (x)}=$ $5 \lim _{x \rightarrow 0} \frac{1}{\sin (x) / x}=5 \cdot 1=5$ by the product rule and the quotient rule (Thm. 3.1 part iv). Thus, $B=5$ and

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\sin (x)}=5
$$

as desired.
(b) Here we use the difference rule (Thm. 3.1 part ii) to obtain

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)-\sin (3 x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}-\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x} .
$$

Next, for any real number $a \neq 0$, we observe

$$
\lim _{x \rightarrow 0} \frac{\sin (a x)}{x}=a \lim _{x \rightarrow 0} \frac{\sin (a x)}{a x}=a \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=a .
$$

Plugging back into the above formula yields

$$
\lim _{x \rightarrow 0} \frac{\sin (5 x)-\sin (3 x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}-\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=5-3=2 .
$$

(c) We use the product rule to get

$$
\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}}}{x^{2}}=\lim _{x \rightarrow 0} \frac{\left(1-\sqrt{1-x^{2}}\right)\left(1+\sqrt{1-x^{2}}\right)}{x^{2}} \lim _{x \rightarrow 0} \frac{1}{\left(1+\sqrt{1-x^{2}}\right)} .
$$

Since $\left(1-\sqrt{1-x^{2}}\right)\left(1+\sqrt{1-x^{2}}\right)=1-\left(1-x^{2}\right)=x^{2}$, the first limit is one. For the second limit, note that $\frac{1}{1+\sqrt{1-x^{2}}}$ is the composition of the functions $1-x^{2}, \sqrt{x}, 1+x$, and $\frac{1}{x}$, which are continuous at the points $0,1,1$, and 2 by Example 5 and Theorem 3.2. Hence, by Theorem 3.5, the function $\frac{1}{1+\sqrt{1-x^{2}}}$ is continuous at $x=0$, and we can just plug in $x=0$ to get that the limit of the second term is $1 / 2$. Multiplying the two terms together, the limit is $1 \cdot 1 / 2=1 / 2$.

Problem 2: Let $A(x)=\int_{-2}^{x} f(t) d t$ where $f(t)=-1$ when $t<0$ and $f(t)=1$ when $t \geq 0$. Graph $y=A(x)$ when $x \in[-2,2]$. Using ϵ and δ, show that $\lim _{x \rightarrow 0} A(x)$ exists and find its value.

Solution (4 points)
Here is the graph:

Now, we prove $\lim _{x \rightarrow 0} A(x)=-2$.
Given $\epsilon>0$, let $\delta=\epsilon$. Suppose $|x|=|x-0|<\delta$, and observe that there are two possibilities, $x \leq 0$ or $x \geq 0$. In the first case, we have $A(x)=\int_{-2}^{x}(-1) d x=-x-2$. Hence,

$$
|A(x)-(-2)|=|(-x-2)+2|=|-x|=|x|<\delta=\epsilon .
$$

In the second case, $A(x)=\int_{-2}^{0}(-1) d x+\int_{0}^{x} 1 d x=-2+x$. Hence,

$$
|A(x)-(-2)|=|(-2+x)+2|=|x|<\delta=\epsilon
$$

In particular, this means $A(x)$ is continuous (we should have known this already because of Thm. 3.4).

Problem 3: Let $f(x)$ be defined for all x, and continuous except for $x=-1$ and $x=3$. Let

$$
g(x)=\left\{\begin{array}{c}
x^{2}+1 \text { for } x>0 \\
x-3 \text { for } x \leq 0
\end{array}\right\} .
$$

For what values of x can you be sure that $f(g(x))$ is continuous? Explain.
Solution (4 points) We wish to use Theorem 3.5 to show that $f(g(x))$ is continuous for some values x. But, we can only use the theorem when g is continuous at x and f is continuous at $g(x)$. Since g is piecewise polynomial, we know g is continuous except at $x=0$ by example one. Now, g takes the value 3 at $x=\sqrt{2}$, and it never takes the value -1 . Hence, at all values except possibly $x=0$ and $x=\sqrt{2}$, we know that $f(g(x))$ is continuous.

This isn't part of the solution, but for the record you might want to know that $f(g(x))$ will be continuous at $x=0$ if and only if $f(1)=f(-3)$. On the other hand, $f(g(x))$ can never be continuous at $x=\sqrt{2}$. It's a good exercise to prove these statements using $\epsilon-\delta$ arguments.

Problem 4: Suppose that g, h are continuous functions on $[a, b]$. Suppose there exists $c \in(a, b)$ such that $g(c)=h(c)$. Define a function $f(x)$ on $[a, b]$ such that $f(x)=g(x)$ for $x<c$ and $f(x)=h(x)$ for $x \geq c$. Prove that $f(x)$ is continuous on $[a, b]$.

Solution (4 points) We divide the task of showing that $f(x)$ is continuous in $[a, b]$ into three cases. First, if $a \leq x_{0}<c$, then $f\left(x_{0}\right)=g\left(x_{0}\right)$. Given $\epsilon>0$, we can find $\delta_{1}>0$ such that $\left|x-x_{0}\right|<\delta_{1}$ implies $\left|g(x)-g\left(x_{0}\right)\right|<\epsilon$ since g is continuous at x_{0}. If we put $\delta=\min \left\{\delta_{1}, x_{0}-a, c-x_{0}\right\}$, then $\left|x-x_{0}\right|<\delta$ implies that $f(x)=g(x)$ and
$\left|g(x)-g\left(x_{0}\right)\right|<\epsilon$. Thus, we conclude $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ and f is continuous at x_{0}.
Next, we consider the case $c<x_{0}<b$, and we note that $f\left(x_{0}\right)=h\left(x_{0}\right)$. Given $\epsilon>0$, we can find $\delta_{1}>0$ such that $\left|x-x_{0}\right|<\delta_{1}$ implies $\left|h(x)-h\left(x_{0}\right)\right|<\epsilon$. If we define $\delta=\min \left\{\delta_{1}, b-x_{0}, x_{0}-c\right\}$, then $\left|x-x_{0}\right|<\delta$ implies $f(x)=h(x)$ and $\left|h(x)-h\left(x_{0}\right)\right|<\epsilon$. Thus, $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ whenever $\left|x-x_{0}\right|<\delta$ and f is continuous at $x=x_{0}$.

Finally, we consider the case of continuity at c. Given $\epsilon>0$, there exists δ_{1} such that $|x-c|<\delta_{1}$ implies $|g(x)-g(c)|<\epsilon$ because g is continuous at c. There also exists δ_{2} such that $|x-c|<\delta_{2}$ implies $|h(x)-h(c)|<\epsilon$ because h is continuous at c. Put $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. If $|x-c|<\delta$, then there are two possibilites. If $x \leq c$, then $f(x)=g(x)$ and $|x-c|<\delta$ implies $|x-c|<\delta_{1}$ and $|g(x)-g(c)|<\epsilon$. Thus, $|f(x)-f(c)|<\epsilon$. If $x>c$, then $f(x)=h(x)$ and $|x-c|<\delta$ implies $|x-c|<\delta_{2}$ and $|h(x)-h(c)|<\epsilon$. Thus, $|f(x)-f(c)|<\epsilon$ using $f(c)=g(c)=h(c)$. Regardless of case, we realize $|x-c|<\delta$ implies $|f(x)-f(c)|<\epsilon$. Thus, f is continuous at c.

Problem 5: Let $f(x)=\sin (1 / x)$ for $x \in \mathbb{R}, x \neq 0$. Show that for any $a \in \mathbb{R}$, the function $g(x)$ defined by

$$
g(x)=\left\{\begin{array}{cc}
f(x) & \text { for } x \neq 0 \\
a & \text { for } x=0
\end{array}\right\}
$$

is not continuous at $x=0$.
Solution (4 points) Observe that if $x=\frac{1}{\pi n / 2}$ where $n=4 k+1$ with $k \in \mathbb{P}$, then

$$
\sin (1 / x)=\sin (\pi n / 2)=\sin ((4 k+1) \pi / 2)=\sin (\pi / 2)=1
$$

On the other hand, if $x=\frac{1}{\pi n / 2}$ where $n=4 k+3$ with $k \in \mathbb{P}$, then

$$
\sin (1 / x)=\sin (\pi n / 2)=\sin ((4 k+3) \pi / 2)=\sin (3 \pi / 2)=-1
$$

Now, suppose $a \neq 1$ and $g(x)$ is continuous at $x=0$. Take $\epsilon=|1-a|$. Then there must exist δ such that $|x-0|<\delta$ implies $|g(x)-a|<\epsilon$. But, by the archimedean property of the real numbers, we can always choose $x=\frac{1}{\pi n / 2}<\delta$ with $n=4 k+1$ and $k \in \mathbb{P}$. Thus, we must have $|g(x)-a|<\epsilon$. But, $g(x)=1$ and we assumed $\epsilon=|1-a|=|g(x)-a|$. This is a contradiction, and we conclude that $g(x)$ is not continuous at $x=0$.

We handle the case $a=1$ similarly. Still assuming $g(x)$ is continuous at $x=0$, we take $\epsilon=2$. Then there must exist δ such that $|x|<\delta$ implies $|g(x)-1|<\epsilon$.

But, choosing $x=\frac{1}{(4 k+3) \pi / 2}<\delta$, we note $g(x)=-1$ and $|g(x)-1|=2$, which isn't less than $\epsilon=2$. Thus, $g(x)$ is still not continuous at $x=0$.

Problem 6: Let f be a real-valued function, which is continuous on the closed interval $[0,1]$. Assume that $0 \leq f(x) \leq 1$ for each $x \in[0,1]$. Prove that there is at least one point c in $[0,1]$ for which $f(c)=c$. Such a point is called a fixed point of f.

Solution (4 points) Put $g(x)=f(x)-x$. Then $g(0)=f(0) \geq 0$, and $g(1)=$ $f(1)-1 \leq 0$ since $f(1) \leq 1$. Hence, $g(0)$ and $g(1)$ have opposite signs and we may apply Bolzano's Theorem (Thm. 3.6). Therefore, there exists $c \in[0,1]$ such that $f(c)-c=g(c)=0$. Moving c to the other side of the equation tell us that $f(c)=c$ as desired.

Bonus: Let f be a bounded function that is integrable on $[a, b]$. Prove that there exists $c \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=2 \int_{a}^{c} f(x) d x
$$

Solution (4 points) Define $g(t)=2 \int_{a}^{t} f(x) d x-\int_{a}^{b} f(x) d x$. By Theorem 3.4 and Theorem 3.2, $g(t)$ is a continuous function on $[a, b]$. Note that $g(a)=-\int_{a}^{b} f(x) d x$ and $g(b)=2 \int_{a}^{b} f(x) d x-\int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x$. Hence, $g(b)=-g(a)$ and g takes values with opposite signs at a and b. ($\operatorname{Or} g(b)=g(a)=0$. In that case just choose $a=c$.) Thus, we may apply Bolzano's theorem, and we find that there exists $c \in[a, b]$ such that

$$
2 \int_{a}^{c} f(x) d x-\int_{a}^{b} f(x) d x=g(c)=0 .
$$

For this value of c, we have the desired formula $\int_{a}^{b} f(x) d x=2 \int_{a}^{c} f(x) d x$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

