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Problem 1: Establish the following limit formulas. You may assume the formula 
limx→0 

sin(
x
x) = 1. 

(a) 
sin(5x)

lim = 5. 
x→0 sin(x) 

(b) 
sin(5x) − sin(3x)

lim = 2. 
x 0 x→

(c) 
2 11 −

√
1 − x

lim = . 
x 0 x2 2→

Solution (4 points) 
(a) Using the product formula for limits (Thm. 3.1 part iii), we have 

sin(5x) sin(5x) 5x sin(5x) 5x 
lim = lim = lim lim = AB. 
x 0 sin(x) x 0 5x sin(x) x 0 5x 

· 
x 0 sin(x)→ → → →

For the first term, note that 5x approaches zero as x approaches zero; hence, 
5xA = 1 by the assumed limit formula. For the second term, note limx 0 sin(x) = →

5 limx→0 sin(
1 
x)/x = 5 · 1 = 5 by the product rule and the quotient rule (Thm. 3.1 part 

iv). Thus, B = 5 and 
sin(5x)

lim = 5 
x→0 sin(x) 

as desired. 

(b) Here we use the difference rule (Thm. 3.1 part ii) to obtain 

sin(5x) − sin(3x) sin(5x) sin(3x)
lim = lim − lim . 
x 0 x x 0 x x 0 x→ → →

Next, for any real number a = 0, we observe 

sin(ax) sin(ax) sin(x)
lim = a lim = a lim = a. 
x→0 x x→0 ax x→0 x 
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Plugging back into the above formula yields


sin(5x) − sin(3x) sin(5x) sin(3x)
lim = lim − lim = 5 − 3 = 2. 
x 0 x x 0 x x 0 x→ → →

(c) We use the product rule to get 

21 −
√

1 − x (1 −
√

1 − x2)(1 + 
√

1 − x2) 1 
lim = lim lim . 
x 0 x2 x 0 x2 x 0 (1 + 

√
1 − x2)→ → →

Since (1 −
√

1 − x2)(1 + 
√

1 − x2) = 1 − (1 − x2) = x2, the first limit is one. For the 
1 2second limit, note that is the composition of the functions 1−x , 

√
x, 1+x,21+

√
1−x

and 
x 
1 , which are continuous at the points 0, 1, 1, and 2 by Example 5 and Theorem 

3.2. Hence, by Theorem 3.5, the function 
1+
√1

1−x2 is continuous at x = 0, and we 
can just plug in x = 0 to get that the limit of the second term is 1/2. Multiplying 
the two terms together, the limit is 1 1/2 = 1/2.· 

x
Problem 2: Let A(x) = f(t)dt where f(t) = −1 when t < 0 and f(t) = 1 when −2 
t ≥ 0. Graph y = A(x) when x ∈ [−2, 2]. Using � and δ, show that limx 0 A(x)→
exists and find its value. 

Solution (4 points) 
Here is the graph: 
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Now, we prove limx 0 A(x) = −2. →
Given � > 0, let δ = �. Suppose x = < δ, and observe that there are two | | |x − 0| � x
possibilities, x ≤ 0 or x ≥ 0. In the first case, we have A(x) = (−1)dx = −x − 2. −2

Hence, 
A(x) − (−2) = (−x − 2) + 2 = = x < δ = �.| �| 0 

| � x 

| | − x| | | 

In the second case, A(x) = −2
(−1)dx + 

0 1dx = −2 + x. Hence, 

|A(x) − (−2)| = |(−2 + x) + 2| = |x| < δ = �. 

In particular, this means A(x) is continuous (we should have known this already 
because of Thm. 3.4). 

Problem 3: Let f(x) be defined for all x, and continuous except for x = −1 and 
x = 3. Let � � 

x2 + 1 for x > 0 
g(x) = . 

x − 3 for x ≤ 0 

For what values of x can you be sure that f(g(x)) is continuous? Explain. 

Solution (4 points) We wish to use Theorem 3.5 to show that f(g(x)) is continuous 
for some values x. But, we can only use the theorem when g is continuous at x and 
f is continuous at g(x). Since g is piecewise polynomial, we know g is continuous 
except at x = 0 by example one. Now, g takes the value 3 at x = 

√
2, and it never 

takes the value −1. Hence, at all values except possibly x = 0 and x = 
√

2, we know 
that f(g(x)) is continuous. 

This isn’t part of the solution, but for the record you might want to know that 
f(g(x)) will be continuous at x = 0 if and only if f(1) = f(−3). On the other hand, 
f(g(x)) can never be continuous at x = 

√
2. It’s a good exercise to prove these 

statements using �-δ arguments. 

Problem 4: Suppose that g, h are continuous functions on [a, b]. Suppose there 
exists c ∈ (a, b) such that g(c) = h(c). Define a function f(x) on [a, b] such that 
f(x) = g(x) for x < c and f(x) = h(x) for x ≥ c. Prove that f(x) is continuous on 
[a, b]. 

Solution (4 points) We divide the task of showing that f(x) is continuous in [a, b] 
into three cases. First, if a ≤ x0 < c, then f(x0) = g(x0). Given � > 0, we can find 
δ1 > 0 such that |x − x0| < δ1 implies |g(x) − g(x0)| < � since g is continuous at x0. 
If we put δ = min{δ1, x0 − a, c − x0}, then |x − x0| < δ implies that f(x) = g(x) and 

3




� � 

|g(x) − g(x0)| < �. Thus, we conclude |f(x) − f(x0)| < � and f is continuous at x0. 
Next, we consider the case c < x0 < b, and we note that f(x0) = h(x0). Given 

� > 0, we can find δ1 > 0 such that |x − x0| < δ1 implies |h(x) − h(x0)| < �. If 
we define δ = min{δ1, b − x0, x0 − c}, then |x − x0| < δ implies f(x) = h(x) and 
|h(x)−h(x0)| < �. Thus, |f(x)−f(x0)| < � whenever |x−x0| < δ and f is continuous 
at x = x0. 

Finally, we consider the case of continuity at c. Given � > 0, there exists δ1 such 
that |x − c| < δ1 implies |g(x) − g(c)| < � because g is continuous at c. There also 
exists δ2 such that |x − c| < δ2 implies |h(x) − h(c)| < � because h is continuous 
at c. Put δ = min{δ1, δ2}. If |x − c| < δ, then there are two possibilites. If x ≤ c, 
then f(x) = g(x) and |x − c| < δ implies |x − c| < δ1 and |g(x) − g(c)| < �. Thus, 
|f(x) − f(c)| < �. If x > c, then f(x) = h(x) and |x − c| < δ implies |x − c| < δ2 

and |h(x) − h(c)| < �. Thus, |f(x) − f(c)| < � using f(c) = g(c) = h(c). Regardless 
of case, we realize |x − c| < δ implies |f(x) − f(c)| < �. Thus, f is continuous at c. 

Problem 5: Let f(x) = sin(1/x) for x ∈ R, x �= 0. Show that for any a ∈ R, the 
function g(x) defined by 

f(x) for x = 0 
g(x) = 

�
a for x = 0 

is not continuous at x = 0. 

Solution (4 points) Observe that if x = 1 where n = 4k + 1 with k ∈ P, then 
πn/2 

sin(1/x) = sin(πn/2) = sin((4k + 1)π/2) = sin(π/2) = 1. 

On the other hand, if x = 1 where n = 4k + 3 with k ∈ P, then 
πn/2 

sin(1/x) = sin(πn/2) = sin((4k + 3)π/2) = sin(3π/2) = −1. 

Now, suppose a = 1 and � g(x) is continuous at x = 0. Take � = |1−a|. Then there 
must exist δ such that |x − 0| < δ implies |g(x) − a| < �. But, by the archimedean 
property of the real numbers, we can always choose x = 1 < δ with n = 4k + 1 

πn/2 

and k ∈ P. Thus, we must have |g(x) − a| < �. But, g(x) = 1 and we assumed 
� = |1 − a| = |g(x) − a|. This is a contradiction, and we conclude that g(x) is not 
continuous at x = 0. 

We handle the case a = 1 similarly. Still assuming g(x) is continuous at x = 0, 
we take � = 2. Then there must exist δ such that |x| < δ implies |g(x) − 1| < �. 
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But, choosing x = 1 < δ, we note g(x) = −1 and |g(x) − 1| = 2, which isn’t 
(4k+3)π/2 

less than � = 2. Thus, g(x) is still not continuous at x = 0. 

Problem 6: Let f be a real-valued function, which is continuous on the closed 
interval [0, 1]. Assume that 0 ≤ f(x) ≤ 1 for each x ∈ [0, 1]. Prove that there is at 
least one point c in [0, 1] for which f(c) = c. Such a point is called a fixed point of 
f . 

Solution (4 points) Put g(x) = f(x) − x. Then g(0) = f(0) ≥ 0, and g(1) = 
f(1) − 1 ≤ 0 since f(1) ≤ 1. Hence, g(0) and g(1) have opposite signs and we may 
apply Bolzano’s Theorem (Thm. 3.6). Therefore, there exists c ∈ [0, 1] such that 
f(c) − c = g(c) = 0. Moving c to the other side of the equation tell us that f(c) = c 
as desired. 

Bonus: Let f be a bounded function that is integrable on [a, b]. Prove that there 
exists c ∈ [a, b] such that 

b c 

f(x)dx = 2 f(x)dx. 
a a 

� t � b
Solution (4 points) Define g(t) = 2 f(x)dx − f(x)dx. By Theorem 3.4 and 

a a � b
Theorem 3.2, g(t) is a continuous function on [a, b]. Note that g(a) = 

a f(x)dx � b � b � b 
− 

and g(b) = 2 f(x)dx − f(x)dx = f(x)dx. Hence, g(b) = −g(a) and g takes 
a a a 

values with opposite signs at a and b. (Or g(b) = g(a) = 0. In that case just 
choose a = c.) Thus, we may apply Bolzano’s theorem, and we find that there 
exists c ∈ [a, b] such that � c � b 

2 f(x)dx − f(x)dx = g(c) = 0. 
a a � b � c

For this value of c, we have the desired formula 
a f(x)dx = 2 

a f(x)dx. 
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