Limits and Continuity - Week 2

Pset 4

Due October 8
(1) Page 138: 17, 18, 21 (1,1, and 2 points respectively)
(2) Let $A(x)=\int_{-2}^{x} f(t) d t$ where $f(t)=-1$ if $t<0$ and $f(t)=1$ if $t \geq 0$. Graph $y=A(x)$ for $x \in[-2,2]$. Using ϵ, δ, show that $\lim _{x \rightarrow 0} A(x)$ exists and find its value. (You may want to draw yourself a picture of $|A(x)-A(0)|$ by considering the appropriate regions on a $t-y$ coordinate plane that contains the graph of $y=f(t)$. This will help you see geometrically how to write δ in terms of ϵ.)
(3) Notes F.2:2
(4) Suppose that g, h are two continuous functions on $[a, b]$. Suppose there exists $c \in(a, b)$ such that $g(c)=h(c)$. Define $f(x)$ such that $f(x)=g(x)$ for $x<c$ and $f(x)=h(x)$ for $x \geq c$. Prove that f is continuous on $[a, b]$.
(5) Let $f(x)=\sin (1 / x)$ for $x \in \mathbb{R}, x \neq 0$. Show that for any $a \in \mathbb{R}$, the function $g(x)$ defined by

$$
g(x)= \begin{cases}f(x) & : x \neq 0 \\ a & : x=0\end{cases}
$$

is not continuous at $x=0$.
(6) page $145: 5$

Bonus: Let f be a bounded function that is integrable on $[a, b]$. Prove that there exists $c \in \mathbb{R}$ with $a \leq c \leq b$ such that $\int_{a}^{b} f(x) d x=2 \int_{a}^{c} f(x) d x$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

