Unit 3: Limits and Continuity - Week 1

Pset 3

Due September 30 (4 points each)
(1) page 83:21
(2) page 94:10
(3) For step functions $s(x), t(x)$ defined on $[a, b]$ prove the Cauchy-Schwarz inequality:

$$
\left(\int_{a}^{b} s(x) t(x) d x\right)^{2} \leq \int_{a}^{b} s(x)^{2} d x \cdot \int_{a}^{b} t(x)^{2} d x
$$

Show that equality holds iff $s(x)=\operatorname{ct}(x)$ where $c \in \mathbb{R}$.
(4) Bonus: Let $B=\left\{x \in[0,1] \mid x=m / 2^{n}\right.$ for some $\left.m, n \in \mathbb{Z}\right\}$ Prove that the function

$$
f(x)= \begin{cases}1 & : x \in B \\ 0 & : x \notin B\end{cases}
$$

is not integrable on $[0,1]$ by our definition of integrability.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

