18.014 Problem Set 2 Solutions Total: 24 points

Problem 1: Let $f(x) = \sum_{k=0}^{n} c_k x^k$ be a polynomial of degree *n*.

(d) If f(x) = 0 for n + 1 distinct real values of x, then every coefficient c_k of f is zero and f(x) = 0 for all real x.

(e) Let $g(x) = \sum_{k=0}^{m} b_k x^k$ be a polynomial of degree m where $m \ge n$. If g(x) = f(x) for m+1 distinct real values of x, then m = n, $b_k = c_k$ for each k, and g(x) = f(x) for all real x.

Solution (4 points)

We prove (d) by induction on n. Since the statement is true for all integers $n \ge 0$, our base case is n = 0. If f is a polynomial of degree 0, then f = c is a constant. If f has n + 1 = 1 real roots, then f(x) = 0 for some x; hence, c = 0 and f(x) = 0 for all x.

Assume the statement is true for all polynomials of degree n; we prove the statement for a polynomial f of degree n + 1. By hypothesis, f has n + 2 distinct real roots, $\{a_1, \ldots, a_{n+2}\}$. Using part (c) of this problem (which we did together in recitation),

$$f(x) = (x - a_{n+2})f_n(x)$$

where f_n is a polynomial of degree n. But, the roots $\{a_1, \ldots, a_{n+2}\}$ are distinct; hence, $a_i - a_{n+2} \neq 0$ if i < n+2 and $f_n(a_i) = 0$ for $i = 1, \ldots, n+1$. Thus, by the induction hypothesis, $f_n = 0$ because f_n is a polynomial of degree n with n+1 distinct real roots, $\{a_1, \ldots, a_{n+1}\}$. Since $f_n = 0$, we conclude $f(x) = (x - a_{n+2})f_n(x) = 0$ for every real x. Moreover, since every coefficient of f_n is zero, every coefficient of f is zero. This is what we wanted to show.

(e). If g(x) = f(x) for m + 1 distinct values of x, then g(x) - f(x) has m + 1 distinct real roots. Moreover, since deg f = n, deg g = m, and $m \ge n$, we observe deg $(g-f) \le m$. Thus, by part (d), g(x)-f(x) = 0 and every coefficient of g(x)-f(x) is zero. This implies g(x) = f(x) for all real x; moreover, since the coefficients of g(x) - f(x) are $b_k - a_k$, it implies $b_k = a_k$ for all k and $m = \deg g = \deg f = n$.

Problem 2: Let $A = \{1, 2, 3, 4, 5\}$, and let \mathcal{M} denote the set of all subsets of A. For each set S in \mathcal{M} , let n(S) defnote the number of elements of S. If $S = \{1, 2, 3, 4\}$

and $T = \{3, 4, 5\}$, compute $n(S \cup T)$, $n(S \cap T)$, n(S - T), and n(T - S). Prove that the set function n satisfies the first three axioms for area.

Solution (4 points)

Note $S \cup T = \{1, 2, 3, 4, 5\}$, $S \cap T = \{3, 4\}$, $S - T = \{1, 2\}$, and $T - S = \{5\}$; hence, $n(S \cup T) = 5$, $n(S \cap T) = 2$, n(S - T) = 2, and n(T - S) = 1.

For the first axiom, $n(S) \ge 0$ for all sets S since the cardinality of a set is always a positive integer or zero.

For the second axiom, note

$$S \cup T = (S - T) \cup (T - S) \cup (T \cap S)$$

and the union is disjoint. In words, if x is in either S or T, then x is either in S and not in T, in T and not in S, or in S and in T. Further, x can only satisfy one of these conditions at a time. Hence, we count

$$n(S \cup T) = n(S - T) + n(T - S) + n(S \cap T). \quad (*)$$

Similarly, $T = (T - S) \cup (S \cap T)$ and $S = (S - T) \cup (S \cap T)$ are disjoint unions; thus, $n(T) = n(T - S) + n(S \cap T)$ and $n(S) = n(S - T) + n(S \cap T)$. Solving for n(S - T), n(T - S) and plugging back into our expression (*), we get

$$n(S \cup T) = n(S) + n(T) - n(S \cap T).$$

Third, suppose $S \subset T$ are two subsets of A. Because $S \subset T$, we have $S - T = \emptyset$ and n(S - T) = 0. Further, $S \cap T = S$ and $S \cup T = T$. Plugging back into the expression (*), we get n(T) = 0 + n(T - S) + n(S). Solving for n(T - S) yields

$$n(T-S) = n(T) - n(S).$$

Problem 3: (a) Compute $\int_0^9 \lfloor \sqrt{t} \rfloor dt$. (b) If *n* is a positive integer, prove $\int_0^{n^2} \lfloor \sqrt{t} \rfloor dt = \frac{n(n-1)(4n+1)}{6}$.

Solution (4 points) (a). Note

$$\lfloor \sqrt{t} \rfloor = \left\{ \begin{array}{l} 0 & \text{if } 0 \le t < 1\\ 1 & \text{if } 1 \le t < 4\\ 2 & \text{if } 4 \le t < 9 \end{array} \right\}.$$

Thus,

$$\int_0^9 \lfloor \sqrt{t} \rfloor dt = 0 \cdot (1-0) + 1 \cdot (4-1) + 2 \cdot (9-4) = 13.$$

(b). More generally, $\lfloor \sqrt{t} \rfloor = m$ if $m^2 \le t < (m+1)^2$. Thus,

$$\int_0^{n^2} \lfloor \sqrt{t} \rfloor dt = \sum_{m=0}^{n-1} m \cdot ((m+1)^2 - m^2).$$

Computing, we get $(m+1)^2 - m^2 = 2m+1$; hence, $m \cdot ((m+1)^2 - m^2) = 2m^2 + m$. Using induction on n, we will show

$$\sum_{m=0}^{n-1} (2m^2 + m) = \frac{n(n-1)(4n+1)}{6}.$$

This will complete the problem. When n = 1, both sides are zero. Assume the statement for n; we will prove it for n + 1. Adding $2n^2 + n$ to both sides yields $\sum_{m=0}^{n} (2m^2 + m) = \frac{n(n-1)(4n+1)}{6} + 2n^2 + n$. Computing, the right hand side multiplied by 6 is

$$n(n-1)(4n+1) + 6(2n^2 + n) = n(4n^2 - 3n - 1 + 12n + 6)$$

= $n(4n^2 + 9n + 5) = n(n+1)((4(n+1) + 1)).$

Thus, we have shown $\sum_{m=0}^{n} (2m^2 + m) = \frac{(n+1)n(4(n+1)+1)}{6}$, which is the statement for n+1.

Problem 4: If, instead of defining integrals of step functions by using formula (1.3), we used the definition

$$\int_{a}^{b} s(x)dx = \sum_{k=1}^{n} s_{k}^{3}(x_{k} - x_{k-1}),$$

a new and different theory of integration would result. Which of the following properties would remain valid in this new theory?

(a)
$$\int_a^b s + \int_b^c s = \int_a^c s.$$

(c) $\int_a^b cs = c \int_a^b s.$

Solution (4 points)

(a) This statement is still true in our new theory of integration; here is a proof. Let

$$a = x_0 < x_1 < \dots < x_n = b$$

be a partition of [a, b] such that $s(x) = a_k$ if $x_{k-1} \leq x < x_k$. Let

$$b = y_0 < y_1 < \dots < y_m = c$$

be a partition of [b, c] such that $s(y) = b_k$ if $y_{k-1} \leq y < y_k$. Then by our new definition of the integral of a step function

$$\int_{a}^{b} s = \sum_{k=1}^{n} a_{k}^{3}(x_{k} - x_{k-1}), \ \int_{b}^{c} s = \sum_{k=1}^{m} b_{k}^{3}(y_{k} - y_{k-1}).$$

Now,

$$a = x_0 < x_1 < \dots < x_n = b = y_0 < \dots < y_m = c$$

is a partition of [a, c] such that s is constant on each interval. Thus,

$$\int_{a}^{c} s = \sum_{k=1}^{n} a_{k}^{3}(x_{k} - x_{k-1}) + \sum_{k=1}^{m} b_{k}^{3}(y_{k} - y_{k-1}).$$

But, this is just the sum of the integrals $\int_a^b s$ and $\int_b^c s$.

(b) This statement is false for our new theory of integration; here is a counterexample. Suppose a = 0, b = 1, s is the constant function 1, and c = 2. Then

$$\int_0^1 2 \cdot 1 = 2^3 (1 - 0) = 8 \neq 2 = 2 \cdot (1(1 - 0)) = 2 \int_0^1 1$$

Problem 5: Prove, using properties of the integral, that for a, b > 0

$$\int_{1}^{a} \frac{1}{x} dx + \int_{1}^{b} \frac{1}{x} dx = \int_{1}^{ab} \frac{1}{x} dx.$$

Define a function $f(w) = \int_1^w \frac{1}{x} dx$. Rewrite the equation above in terms of f. Give an example of a function that has the same property as f.

Solution (4 points) Using Thm. I.19 on page 81, we have

$$\int_{1}^{b} \frac{1}{x} dx = \frac{1}{a} \int_{a}^{ab} \frac{a}{x} = \int_{a}^{ab} \frac{1}{x}.$$

And, using Thm. I. 16 on page 81, we have

$$\int_{1}^{a} \frac{1}{x} dx + \int_{a}^{ab} \frac{1}{x} dx = \int_{1}^{ab} \frac{1}{x} dx.$$

Combining the two gives us the result.

If $f(w) = \int_1^w \frac{1}{x} dx$, then our equation reads f(a) + f(b) = f(ab). The natural logarithm function, $\log(x)$, satisfies this property.

Problem 6: Suppose we define $\int_a^b s(x)dx = \sum s_k(x_{k-1} - x_k)^2$ for a step function s(x) with partition $P = \{x_0, \ldots, x_n\}$. Is this integral well-defined? That is, will the value of the integral be independent of the choice of partition? (If well-defined, prove it. If not well-defined, provide a counterexample.)

Solution (4 points)

This is not a well-defined definition of an integral. Consider the example of the constant function s = 1 on the interval [0, 1]. If we choose the partition $P = \{0, 1\}$, then we get

$$\int_0^1 1 \cdot dx = 1 \cdot (1-0)^2 = 1$$

On the other hand, if we choose the partition $P' = \{0, \frac{1}{2}, 1\}$, then we get

$$\int_0^1 1 \cdot dx = 1 \cdot \left(\frac{1}{2} - 0\right)^2 + 1 \cdot \left(1 - \frac{1}{2}\right)^2 = \frac{1}{2}.$$

We get two different answers with two different partitions! Therefore, this integral is not well-defined.

Bonus: Define the function (where n is in the positive integers)

$$f(x) = \left\{ \begin{array}{l} x & \text{if } x = \frac{1}{n^2} \\ 0 & \text{if } x \neq \frac{1}{n^2} \end{array} \right\}.$$

Prove that f is integrable on [0, 1] and that $\int_0^1 f(x)dx = 0$.

Solution (4 points)

Let $\epsilon > 0$ and choose n such that $n^4 > 1/\epsilon$. Consider a partition of [0, 1] into n subintervals such that $x_0 = 0$ and $x_k = \frac{1}{(n-(k-1))^2}$ for $1 \le k \le n$. Define the step function t_n in the following manner: Let $t_n(x_k) = 1$ for all $1 \le k \le n$ and $t_n(0) = 0$. For $0 < x < 1/n^2$, let $t_n(x) = 1/n^2$. For all other $x \in [0, 1]$, let $t_n(x) = 0$. Then $t_n(x) \ge f(x)$ for all $x \in [0, 1]$. Moreover, $\int_0^1 t_n(x) dx = 1/n^4 < \epsilon$.

Now, consider s(x) = 0 for all $x \in [0, 1]$. Then $s(x) \leq f(x)$ and $\int_0^1 s(x)dx = 0$. By the Riemann condition, f is integrable on [0, 1]. Moreover, as $\int_0^1 f(x)dx = \inf\{\int_0^1 t(x)dx | t(x) \geq f(x)$ for step functions t(x) defined on $[0, 1]\}$, we see that $\int_0^1 f(x)dx = 0$. MIT OpenCourseWare http://ocw.mit.edu

18.014 Calculus with Theory Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.