18.014 Problem Set 2 Solutions

Total: 24 points

Problem 1: Let $f(x)=\sum_{k=0}^{n} c_{k} x^{k}$ be a polynomial of degree n.
(d) If $f(x)=0$ for $n+1$ distinct real values of x, then every coefficient c_{k} of f is zero and $f(x)=0$ for all real x.
(e) Let $g(x)=\sum_{k=0}^{m} b_{k} x^{k}$ be a polynomial of degree m where $m \geq n$. If $g(x)=f(x)$ for $m+1$ distinct real values of x, then $m=n, b_{k}=c_{k}$ for each k, and $g(x)=f(x)$ for all real x.

Solution (4 points)

We prove (d) by induction on n. Since the statement is true for all integers $n \geq 0$, our base case is $n=0$. If f is a polynomial of degree 0 , then $f=c$ is a constant. If f has $n+1=1$ real roots, then $f(x)=0$ for some x; hence, $c=0$ and $f(x)=0$ for all x.
Assume the statement is true for all polynomials of degree n; we prove the statement for a polynomial f of degree $n+1$. By hypothesis, f has $n+2$ distinct real roots, $\left\{a_{1}, \ldots, a_{n+2}\right\}$. Using part (c) of this problem (which we did together in recitation),

$$
f(x)=\left(x-a_{n+2}\right) f_{n}(x)
$$

where f_{n} is a polynomial of degree n. But, the roots $\left\{a_{1}, \ldots, a_{n+2}\right\}$ are distinct; hence, $a_{i}-a_{n+2} \neq 0$ if $i<n+2$ and $f_{n}\left(a_{i}\right)=0$ for $i=1, \ldots, n+1$. Thus, by the induction hypothesis, $f_{n}=0$ because f_{n} is a polynomial of degree n with $n+1$ distinct real roots, $\left\{a_{l}, \ldots, a_{n+1}\right\}$. Since $f_{n}=0$, we conclude $f(x)=\left(x-a_{n+2}\right) f_{n}(x)=0$ for every real x. Moreover, since every coefficient of f_{n} is zero, every coefficient of f is zero. This is what we wanted to show.
(e). If $g(x)=f(x)$ for $m+1$ distinct values of x, then $g(x)-f(x)$ has $m+1$ distinct real roots. Moreover, since $\operatorname{deg} f=n, \operatorname{deg} g=m$, and $m \geq n$, we observe $\operatorname{deg}(g-f) \leq m$. Thus, by part (d), $g(x)-f(x)=0$ and every coefficient of $g(x)-f(x)$ is zero. This implies $g(x)=f(x)$ for all real x; moreover, since the coefficients of $g(x)-f(x)$ are $b_{k}-a_{k}$, it implies $b_{k}=a_{k}$ for all k and $m=\operatorname{deg} g=\operatorname{deg} f=n$.

Problem 2: Let $A=\{1,2,3,4,5\}$, and let \mathcal{M} denote the set of all subsets of A. For each set S in \mathcal{M}, let $n(S)$ defnote the number of elements of S. If $S=\{1,2,3,4\}$
and $T=\{3,4,5\}$, compute $n(S \cup T), n(S \cap T), n(S-T)$, and $n(T-S)$. Prove that the set function n satisfies the first three axioms for area.

Solution (4 points)
Note $S \cup T=\{1,2,3,4,5\}, S \cap T=\{3,4\}, S-T=\{1,2\}$, and $T-S=\{5\}$; hence, $n(S \cup T)=5, n(S \cap T)=2, n(S-T)=2$, and $n(T-S)=1$.
For the first axiom, $n(S) \geq 0$ for all sets S since the cardinality of a set is always a positive integer or zero.
For the second axiom, note

$$
S \cup T=(S-T) \cup(T-S) \cup(T \cap S)
$$

and the union is disjoint. In words, if x is in either S or T, then x is either in S and not in T, in T and not in S, or in S and in T. Further, x can only satisfy one of these conditions at a time. Hence, we count

$$
\begin{equation*}
n(S \cup T)=n(S-T)+n(T-S)+n(S \cap T) \tag{*}
\end{equation*}
$$

Similarly, $T=(T-S) \cup(S \cap T)$ and $S=(S-T) \cup(S \cap T)$ are disjoint unions; thus, $n(T)=n(T-S)+n(S \cap T)$ and $n(S)=n(S-T)+n(S \cap T)$. Solving for $n(S-T), n(T-S)$ and plugging back into our expression $(*)$, we get

$$
n(S \cup T)=n(S)+n(T)-n(S \cap T)
$$

Third, suppose $S \subset T$ are two subsets of A. Because $S \subset T$, we have $S-T=\emptyset$ and $n(S-T)=0$. Further, $S \cap T=S$ and $S \cup T=T$. Plugging back into the expression $(*)$, we get $n(T)=0+n(T-S)+n(S)$. Solving for $n(T-S)$ yields

$$
n(T-S)=n(T)-n(S)
$$

Problem 3: (a) Compute $\int_{0}^{9}\lfloor\sqrt{t}\rfloor d t$.
(b) If n is a positive integer, prove $\int_{0}^{n^{2}}\lfloor\sqrt{t}\rfloor d t=\frac{n(n-1)(4 n+1)}{6}$.

Solution (4 points)
(a). Note

$$
\lfloor\sqrt{t}\rfloor=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<1 \\
1 & \text { if } 1 \leq t<4 \\
2 & \text { if } 4 \leq t<9
\end{array}\right\}
$$

Thus,

$$
\int_{0}^{9}\lfloor\sqrt{t}\rfloor d t=0 \cdot(1-0)+1 \cdot(4-1)+2 \cdot(9-4)=13
$$

(b). More generally, $\lfloor\sqrt{t}\rfloor=m$ if $m^{2} \leq t<(m+1)^{2}$. Thus,

$$
\int_{0}^{n^{2}}\lfloor\sqrt{t}\rfloor d t=\sum_{m=0}^{n-1} m \cdot\left((m+1)^{2}-m^{2}\right)
$$

Computing, we get $(m+1)^{2}-m^{2}=2 m+1$; hence, $m \cdot\left((m+1)^{2}-m^{2}\right)=2 m^{2}+m$. Using induction on n, we will show

$$
\sum_{m=0}^{n-1}\left(2 m^{2}+m\right)=\frac{n(n-1)(4 n+1)}{6}
$$

This will complete the problem. When $n=1$, both sides are zero. Assume the statement for n; we will prove it for $n+1$. Adding $2 n^{2}+n$ to both sides yields $\sum_{m=0}^{n}\left(2 m^{2}+m\right)=\frac{n(n-1)(4 n+1)}{6}+2 n^{2}+n$. Computing, the right hand side multiplied by 6 is

$$
\begin{gathered}
n(n-1)(4 n+1)+6\left(2 n^{2}+n\right)=n\left(4 n^{2}-3 n-1+12 n+6\right) \\
=n\left(4 n^{2}+9 n+5\right)=n(n+1)((4(n+1)+1) .
\end{gathered}
$$

Thus, we have shown $\sum_{m=0}^{n}\left(2 m^{2}+m\right)=\frac{(n+1) n(4(n+1)+1)}{6}$, which is the statement for $n+1$.

Problem 4: If, instead of defining integrals of step functions by using formula (1.3), we used the definition

$$
\int_{a}^{b} s(x) d x=\sum_{k=1}^{n} s_{k}^{3}\left(x_{k}-x_{k-1}\right)
$$

a new and different theory of integration would result. Which of the following properties would remain valid in this new theory?
(a) $\int_{a}^{b} s+\int_{b}^{c} s=\int_{a}^{c} s$.
(c) $\int_{a}^{b} c s=c \int_{a}^{b} s$.

Solution (4 points)
(a) This statement is still true in our new theory of integration; here is a proof. Let

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

be a partition of $[a, b]$ such that $s(x)=a_{k}$ if $x_{k-1} \leq x<x_{k}$. Let

$$
b=y_{0}<y_{1}<\cdots<y_{m}=c
$$

be a partition of $[b, c]$ such that $s(y)=b_{k}$ if $y_{k-1} \leq y<y_{k}$. Then by our new definition of the integral of a step function

$$
\int_{a}^{b} s=\sum_{k=1}^{n} a_{k}^{3}\left(x_{k}-x_{k-1}\right), \int_{b}^{c} s=\sum_{k=1}^{m} b_{k}^{3}\left(y_{k}-y_{k-1}\right) .
$$

Now,

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b=y_{0}<\cdots<y_{m}=c
$$

is a partition of $[a, c]$ such that s is constant on each interval. Thus,

$$
\int_{a}^{c} s=\sum_{k=1}^{n} a_{k}^{3}\left(x_{k}-x_{k-1}\right)+\sum_{k=1}^{m} b_{k}^{3}\left(y_{k}-y_{k-1}\right) .
$$

But, this is just the sum of the integrals $\int_{a}^{b} s$ and $\int_{b}^{c} s$.
(b) This statement is false for our new theory of integration; here is a counterexample. Suppose $a=0, b=1, s$ is the constant function 1 , and $c=2$. Then

$$
\int_{0}^{1} 2 \cdot 1=2^{3}(1-0)=8 \neq 2=2 \cdot(1(1-0))=2 \int_{0}^{1} 1 .
$$

Problem 5: Prove, using properties of the integral, that for $a, b>0$

$$
\int_{1}^{a} \frac{1}{x} d x+\int_{1}^{b} \frac{1}{x} d x=\int_{1}^{a b} \frac{1}{x} d x
$$

Define a function $f(w)=\int_{1}^{w} \frac{1}{x} d x$. Rewrite the equation above in terms of f. Give an example of a function that has the same property as f.

Solution (4 points) Using Thm. I. 19 on page 81, we have

$$
\int_{1}^{b} \frac{1}{x} d x=\frac{1}{a} \int_{a}^{a b} \frac{a}{x}=\int_{a}^{a b} \frac{1}{x} .
$$

And, using Thm. I. 16 on page 81, we have

$$
\int_{1}^{a} \frac{1}{x} d x+\int_{a}^{a b} \frac{1}{x} d x=\int_{1}^{a b} \frac{1}{x} d x
$$

Combining the two gives us the result.
If $f(w)=\int_{1}^{w} \frac{1}{x} d x$, then our equation reads $f(a)+f(b)=f(a b)$. The natural logarithm function, $\log (x)$, satisfies this property.

Problem 6: Suppose we define $\int_{a}^{b} s(x) d x=\sum s_{k}\left(x_{k-1}-x_{k}\right)^{2}$ for a step function $s(x)$ with partition $P=\left\{x_{0}, \ldots, x_{n}\right\}$. Is this integral well-defined? That is, will the value of the integral be independent of the choice of partition? (If well-defined, prove it. If not well-defined, provide a counterexample.)

Solution (4 points)

This is not a well-defined definition of an integral. Consider the example of the constant function $s=1$ on the interval $[0,1]$. If we choose the partition $P=\{0,1\}$, then we get

$$
\int_{0}^{1} 1 \cdot d x=1 \cdot(1-0)^{2}=1 .
$$

On the other hand, if we choose the partition $P^{\prime}=\left\{0, \frac{1}{2}, 1\right\}$, then we get

$$
\int_{0}^{1} 1 \cdot d x=1 \cdot\left(\frac{1}{2}-0\right)^{2}+1 \cdot\left(1-\frac{1}{2}\right)^{2}=\frac{1}{2}
$$

We get two different answers with two different partitions! Therefore, this integral is not well-defined.

Bonus: Define the function (where n is in the positive integers)

$$
f(x)=\left\{\begin{array}{ll}
x & \text { if } x=\frac{1}{n^{2}} \\
0 & \text { if } x \neq \frac{1}{n^{2}}
\end{array}\right\} .
$$

Prove that f is integrable on $[0,1]$ and that $\int_{0}^{1} f(x) d x=0$.

Solution (4 points)

Let $\epsilon>0$ and choose n such that $n^{4}>1 / \epsilon$. Consider a partition of $[0,1]$ into n subintervals such that $x_{0}=0$ and $x_{k}=\frac{1}{(n-(k-1))^{2}}$ for $1 \leq k \leq n$. Define the step function t_{n} in the following manner: Let $t_{n}\left(x_{k}\right)=1$ for all $1 \leq k \leq n$ and $t_{n}(0)=0$. For $0<x<1 / n^{2}$, let $t_{n}(x)=1 / n^{2}$. For all other $x \in[0,1]$, let $t_{n}(x)=0$. Then $t_{n}(x) \geq f(x)$ for all $x \in[0,1]$. Moreover, $\int_{0}^{1} t_{n}(x) d x=1 / n^{4}<\epsilon$.

Now, consider $s(x)=0$ for all $x \in[0,1]$. Then $s(x) \leq f(x)$ and $\int_{0}^{1} s(x) d x=0$. By the Riemann condition, f is integrable on $[0,1]$. Moreover, as $\int_{0}^{1} f(x) d x=$ $\inf \left\{\int_{0}^{1} t(x) d x \mid t(x) \geq f(x)\right.$ for step functions $t(x)$ defined on $\left.[0,1]\right\}$, we see that $\int_{0}^{1} f(x) d x=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

