Unit 2: The Integral

Pset 2

Due September 24 (4 points each)
(1) page 57: 9de (You may use 9abc as you already proved those for recitation)
(2) page 60: 6
(3) page 70: 7
(4) page 70: 11ac
(5) Prove, using properties of the integral, that for $a, b>0$

$$
\int_{1}^{a} \frac{1}{x} d x+\int_{1}^{b} \frac{1}{x} d x=\int_{1}^{a b} \frac{1}{x} d x
$$

Define a function $f(w)=\int_{1}^{w} \frac{1}{x} d x$, for $w \in \mathbb{R}^{+}$. Rewrite the equation above in terms of the function f. Give an example of a function that has the same property as the one displayed here by f.
(6) Suppose we define $\int_{a}^{b} s(x) d x=\sum s_{k}\left(x_{k-1}-x_{k}\right)^{2}$ for a step function $s(x)$ with partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Is this integral well-defined? That is, will the value of the integral be independent of the choice of partition? (If well-defined, prove it. If not well-defined, provide a counterexample.)

Bonus:
Define the function (where n is in the positive integers)

$$
f(x)= \begin{cases}x & : x=\frac{1}{n^{2}} \\ 0 & : x \neq \frac{1}{n^{2}}\end{cases}
$$

Prove that f is integrable on $[0,1]$ and that $\int_{0}^{1} f(x) d x=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

