18.014 Problem Set 1 Solutions

Total: 24 points

Problem 1: If $a b=0$, then $a=0$ or $b=0$.
Solution (4 points)
Suppose $a b=0$ and $b \neq 0$. By axiom 6, there exists a real number y such that $b y=1$. Hence, we have

$$
a=1 \cdot a=a \cdot 1=a(b y)=(a b) y=0 \cdot y=0
$$

using axiom 4 , axiom 1 , axiom 2 , and Thm. I.6. We conclude that a and b cannot both be non-zero; thus, $a=0$ or $b=0$.

Problem 2: If $a<c$ and $b<d$, then $a+b<c+d$.
Solution (4 points) By Theorem I.18, $a+b<c+b$ and $b+c<d+c$. By the commutative axiom for addition, we know that $c+b=b+c, d+c=c+d$. Therefore, $a+b<c+b, c+b<c+d$. By Theorem I.17, $a+b<c+d$.

Problem 3: For all real numbers x and $y,||x|-|y|| \leq|x-y|$.

Solution (4 points)

By part (i) of this exercise, $|x|-|y| \leq|x-y|$. Now notice that $-(|x|-|y|)=|y|-|x|$. By definition of the absolute value, either $\| x|-|y||=|x|-|y|$ or $\| x|-|y||=|y|-|x|$. In the first case, by part (i) of this problem, we see that $||x|-|y|| \leq|x-y|$. In the second case, we can interchange the x and y from part (i) to get $\|x|-| y\|=$ $|y|-|x| \leq|y-x|=|x-y|$, where the last equality comes from part (c) of this problem. Thus, $||x|-|y|| \leq|x-y|$.

Problem 4: Let P be the set of positive integers. If $n, m \in P$, then $n m \in P$.
Solution (4 points)

Fix $n \in P$. We show by induction on m that $n m \in P$ for all $m \in P$.
First, we check the base case. If $m=1$, then

$$
n m=n \cdot 1=1 \cdot n=n \in P
$$

by axiom 4 , axiom 1 , and the hypothesis $n \in P$.
Next, we assume the statement for $m=k$ and we prove it for $m=k+1$. Assume $n k \in P$. By theorem 5 of the course notes, $n k+n \in P$. By axiom $3, n k+n=n(k+1)$; thus, $n(k+1) \in P$ and our induction is complete.

Problem 5: Let $a, b \in \mathbb{R}$ be real numbers and let $n \in P$ be a positive integer. Then $a^{n} \cdot b^{n}=(a \cdot b)^{n}$.

Solution (4 points)

Fix $a, b \in \mathbb{R}$. We prove the statement by induction on n.
First, we must check the statement for $n=1$. In that case, we must show $a^{1} \cdot b^{1}=$ $(a \cdot b)^{1}$. By the definition of exponents, we know $a^{1}=a, b^{1}=b$, and $(a \cdot b)^{1}=a \cdot b$ so our statement becomes the tautology $a \cdot b=a \cdot b$.
Next, we check the inductive step. Assume the statement is true for $n=k$; we must prove it for $n=k+1$.
Notice that $(a b)^{k+1}=(a b)^{k} \cdot(a b)^{1}=a^{k} \cdot b^{k} \cdot a^{1} \cdot b^{1}$ by Theorem 10 from the course notes and the induction hypothesis. As $a^{k} \cdot b^{k} \cdot a^{1} \cdot b^{1}=a^{k} \cdot a^{1} \cdot b^{k} \cdot b^{1}=a^{k+1} \cdot b^{k+1}$ by commutativity and Theorem 10, we see that the statement holds for $n=k+1$.

Problem 6: Let a and h be real numbers, and let m be a positive integer. Show by induction that if a and $a+h$ are positive, then $(a+h)^{m} \geq a^{m}+m a^{m-1} h$.

Solution (4 points)

The first step is to prove the statement for $m=1$. In this case $(a+h)^{m}=(a+h)^{1}=$ $a+h$ by the definition of exponents and

$$
a^{m}+m a^{m-1} h=a^{1}+1 \cdot a^{(1-1)} h=a+a^{0} h=a+1 \cdot h=a+h
$$

where the second to last inequality used the definition $a^{0}=1$. Hence, for $m=1$, we have $(a+h)^{m}=a^{m}+m a^{m-1} h$, which in particular implies $(a+h)^{m} \leq a^{m}+m a^{m-1} h$ by the definition of \leq.
Next, we assume the statement for $m=k$, and then we prove it for $m=k+1$. Thus, we assume $(a+h)^{k} \geq a^{k}+k a^{k-1} h$, which means $(a+h)^{k}=a^{k}+k a^{k-1}$ or
$(a+h)^{k}>a^{k}+k a^{k-1} h$. In the first case, we can multiply both sides by $(a+h)$ to get $(a+h)^{k} \cdot(a+h)=\left(a^{k}+k a^{k-1}\right)(a+h)$. In the second case, we can use Thm. I. 19 and the fact that $a+h>0$ to conclude $(a+h)^{k} \cdot(a+h)>\left(a^{k}+k a^{k-1} h\right) \cdot(a+h)$. Thus, by the definition of exponents and the definition of \geq, we have
$(a+h)^{k+1}=(a+h)^{k} \cdot(a+h) \geq\left(a^{k}+k a^{k-1} h\right) \cdot(a+h)=a^{k+1}+(k+1) a^{k} h+k a^{k-1} h^{2}$.
To finish the proof we need a lemma.
Lemma: If a is a positive real number, then a^{l} is positive for all positive integers l.

The proof is by induction on l. When $l=1$, we know $a^{l}=a^{1}=a$ using the definition of exponents. However, a is positive by hypothesis so the base case is true.
Now we assume the result for l and prove it for $l+1$. Note $a^{l+1}=a^{l} \cdot a$ by the definition of exponents. Further, by the problem 5, a^{l+1} is positive since a^{l} is positive by the induction hypothesis and a is positive by the hypothesis of the lemma. The lemma follows.

Now, back to our proof. By the lemma, we know a^{k-1} is positive since $k-1$ is a positive integer and a is positive. Moreover, all positive integers are positive, as is remarked in the course notes; thus, $k a^{k-1}$ is positive by problem 5 . Now, if $h=0$, then $h^{2}=0$ by Thm. I.6; hence, $\left(k a^{k-1}\right) h^{2}=0$ again by Thm. I.6. Putting this together with the expression $(*)$ above yields

$$
(a+h)^{k+1} \geq a^{k+1}+(k+1) a^{k} h+k a^{k-1} h^{2}=a^{k+1}+(k+1) a^{k} h .
$$

On the other hand, if $h \neq 0$, then $h^{2}>0$ by Thm. I.20; hence, $k a^{k-1} h^{2}>0$ by Thm. I.19. Adding $a^{k+1}+(k+1) a^{k} h$ to both sides (using Thm. I.18) yields $a^{k+1}+(k+1) a^{k} h<a^{k+1}+(k+1) a^{k} h+k a^{k-1} h^{2}$. Combining this with (*) and applying the transitive property (Thm. I.1.7) implies $(a+h)^{k+1}>a^{k+1}+(k+1) a^{k} h$. In particular,

$$
(a+h)^{k+1} \geq a^{k+1}+(k+1) a^{k} h
$$

Thus, regardless of whether $h=0$ or $h \neq 0$, we have proved the statement for $m=k+1$. The claim follows.

Bonus: If x_{1}, \ldots, x_{n} are positive real numbers, define

$$
A_{n}=\frac{x_{1}+\cdots+x_{n}}{n}, G_{n}=\left(x_{1} \cdots x_{n}\right)^{1 / n} .
$$

(a) Prove that $G_{n} \leq A_{n}$ for $n=2$.
(b) Use induction to show $G_{n} \leq A_{n}$ for any $n=2^{k}$ where k is a positive integer.
(c) Now show $G_{n} \leq A_{n}$ for any positive integer n.

Solution (4 points)

Because this is a bonus problem, this solution is a bit less rigorous than the others. However, you should be able to fill in all of the details on your own.
(a) Note $\left(x_{1}-x_{2}\right)^{2} \geq 0$. Expanding, we get

$$
\left(x_{1}-x_{2}\right)^{2}=x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}=\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}
$$

is also positive. Hence, $\left(x_{1}+x_{2}\right)^{2} \geq 4 x_{1} x_{2}$. Dividing by 4 and taking square roots, we get

$$
\frac{x_{1}+x_{2}}{2} \geq\left(x_{1} x_{2}\right)^{1 / 2}
$$

(b) We prove this part by induction on k. The base case $k=1$ was done in part a. Now, we assume $G_{n} \leq A_{n}$ for $n=2^{k}$, and we prove it for $n=2^{k+1}$. The inductive hypothesis tells us that

$$
Y_{1}=\frac{x_{1}+\cdots+x_{2^{k}}}{2^{k}} \geq\left(x_{1} \cdots x_{2^{k}}\right)^{1 / 2^{k}}
$$

and

$$
Y_{2}=\frac{x_{2^{k}+1}+\cdots+x_{2^{k+1}}}{2^{k}} \geq\left(x_{2^{k}+1} \cdots x_{2^{k+1}}\right)^{1 / 2^{k}}
$$

Using part (a), we know

$$
\frac{Y_{1}+Y_{2}}{2} \geq\left(Y_{1} Y_{2}\right)^{1 / 2}
$$

Writing this in terms of the x_{i}, we have

$$
\frac{x_{1}+\cdots+x_{2^{k+1}}}{2^{k+1}} \geq\left(x_{1} \cdots x_{2^{k+1}}\right)^{1 / 2^{k+1}} .
$$

(c) Select a positive integer m such that $2^{m}>n$. Fix positive real numbers x_{1}, \ldots, x_{n}, and let

$$
A_{n}=\frac{x_{1}+\cdots+x_{n}}{n} .
$$

Now, put $A_{n}=x_{n+1}=x_{n+1}=\cdots=x_{2^{m}}$. Applying part (b) for these real numbers $x_{1}, \ldots, x_{2^{m}}$ yields

$$
\frac{x_{1}+\cdots+x_{n}+\left(2^{m}-n\right) A_{n}}{2^{m}} \geq\left(x_{1} \cdots x_{n}\right)^{1 / 2^{m}} A_{n}^{\left(2^{m}-n\right) / 2^{m}}
$$

The left hand side is just A_{n}; hence, dividing both sides by $A_{n}^{\left(2^{m}-n\right) / 2^{m}}$ yields $A_{n}^{n / 2^{m}} \geq$ $\left(x_{1} \cdots x_{n}\right)^{1 / 2^{m}}$. Raising both sides to the power of $2^{m} / n$ yields

$$
A_{n} \geq\left(x_{1} \cdots x_{n}\right)^{1 / n}
$$

This is what we wanted to show.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

