18.014 Problem Set 11 Solutions

Total: 32 points

Problem 1: Prove that a sequence converges if, and only if its liminf equals its limsup.

Solution (4 points) Suppose $\left\{a_{n}\right\}$ is a sequence that converges to a limit L. Then given $\epsilon>0$, there exists an integer N such that $n>N$ implies $\left|a_{n}-L\right|<\frac{\epsilon}{2}$. In particular, the set $\left\{a_{n}\right\}$ for $n>N$ is bounded below by $L-\frac{\epsilon}{2}$ and bounded above by $L+\frac{\epsilon}{2}$. Thus,

$$
L+\frac{\epsilon}{2} \geq \inf _{n \geq N+1} a_{n} \geq L-\frac{\epsilon}{2} \text { and } L+\frac{\epsilon}{2} \geq \sup _{n \geq N+1} a_{n} \geq L-\frac{\epsilon}{2}
$$

In particular, given $\epsilon>0$, there exists N such that $m>N$ implies

$$
\left|\inf _{n \geq m} a_{n}-L\right|<\epsilon,\left|\sup _{n \geq m} a_{n}-L\right|<\epsilon .
$$

We conclude $\liminf a_{n}=L=\limsup a_{n}$ and the liminf equals the limsup.
Conversely, suppose $\left\{a_{n}\right\}$ is a sequence such that $\lim \inf a_{n}=L=\lim \sup a_{n}$. We will show $\lim _{n \rightarrow \infty} a_{n}=L$. Given $\epsilon>0$, there exist N_{1} and N_{2} such that $m>N_{1}$ implies

$$
\left|\inf _{n \geq m} a_{n}-L\right|<\epsilon
$$

and $m>N_{2}$ implies

$$
\left|\sup _{n \geq m} a_{n}-L\right|<\epsilon
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$. If $m>N_{1}, N_{2}$, then

$$
L-\epsilon<\inf _{n \geq m} a_{n} \leq a_{m} \leq \sup _{n \geq m} a_{n}<L+\epsilon
$$

In particular,

$$
\left|a_{m}-L\right|<\epsilon
$$

if $m>N$. Thus, $\lim _{n \rightarrow \infty} a_{n}=L$.

Problem 2: Use this fact to prove every Cauchy sequence of real numbers converges.
Solution (4 points) First, recall the following lemma:
Lemma: Every decreasing sequence that is bounded below converges, and every increasing sequence that is bounded above converges.

Now, let $\left\{a_{n}\right\}$ be a Cauchy sequence of real numbers. Then there exists M such that $n, m>M$ implies $\left|a_{n}-a_{m}\right|<1$. Putting $m=M+1$, we observe $a_{M+1}-1 \leq a_{n} \leq$ $a_{M+1}+1$ if $n>M$. Put $C=\max \left\{a_{M+1}, a_{1}, \ldots, a_{M}\right\}$ and put $B=\min \left\{a_{M+1}-\right.$ $\left.1, a_{1}, \ldots, a_{M}\right\}$. Then

$$
B \leq a_{n} \leq C
$$

for all n. In particular, if $b_{n}=\sup _{m \geq n} a_{m}$ and $c_{n}=\inf _{m \geq n} a_{m}$, then $\left\{b_{n}\right\}$ is a decreasing sequence bounded below by \bar{B} and $\left\{c_{n}\right\}$ is an increasing sequence bounded above by C. Thus, by the lemma $\left\{b_{n}\right\}$ converges to L_{1} and $\left\{c_{n}\right\}$ converges to L_{2}.

To finish the proof, we again use that $\left\{a_{n}\right\}$ is a Cauchy sequence. Given $\epsilon>0$, there must exist N such that $n, m>N$ implies $\left|a_{n}-a_{m}\right|<\frac{\epsilon}{5}$. Moreover, there must exist $M_{1}>N$ such that $\left|b_{M_{1}}-L_{1}\right|<\frac{\epsilon}{5}$ and $M_{2}>N$ such that $\left|c_{M_{2}}-L_{2}\right|<\frac{\epsilon}{5}$. We can do this because $\lim _{n \rightarrow \infty} b_{n}=L_{1}$ and $\lim _{n \rightarrow \infty} c_{n}=L_{2}$. Choose $n \geq M_{1}$ such that $\left|a_{n}-b_{M_{1}}\right|<\frac{\epsilon}{5}$ and choose $m \geq M_{2}$ such that $\left|a_{m}-c_{M_{2}}\right|<\frac{\epsilon}{5}$. We can do this because $b_{M_{1}}=\sup _{k \geq M_{1}} a_{k}$ and $c_{M_{2}}=\inf _{k \geq M_{2}} a_{k}$. Now, we observe

$$
\left|L_{1}-L_{2}\right| \leq\left|L_{1}-b_{M_{1}}\right|+\left|b_{M_{1}}-a_{n}\right|+\left|a_{n}-a_{m}\right|+\left|a_{m}-c_{M_{2}}\right|+\left|c_{M_{2}}-L_{2}\right|<\epsilon
$$

Since this is true for every $\epsilon>0$, we conclude that $L_{1}=L_{2}$. But, by the previous problem, if the liminf and the limsup are equal, then $\lim _{n \rightarrow \infty} a_{n}$ exists. Therefore, every Cauchy sequence converges.

Problem 3: Suppose the series $\sum_{n=1}^{\infty} a_{n}$ converges. Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Solution (4 points) Define $s_{m}=\sum_{n=1}^{m} a_{n}$. Then by definition $\left\{s_{m}\right\}$ converges. In particular, $\left\{s_{m}\right\}$ is a Cauchy sequence (Problem 5 on the last practice exam). Thus, given $\epsilon>0$, there exists N such that $m, n>N$ implies $\left|s_{n}-s_{m}\right|<\epsilon$. If we choose $n=m+1$, then we get

$$
\left|a_{m}\right|=\left|s_{m+1}-s_{m}\right|<\epsilon
$$

whenever $m>N+1$. We conclude $\lim _{m \rightarrow \infty} a_{m}=0$.

Problem 4: A function f on \mathbb{R} is compactly supported if there exists a constant $B>0$ such that $f(x)=0$ if $|x| \geq B$. If f and g are two differentiable, compactly supported functions on \mathbb{R}, then we define

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

Prove (i) $f * g=g * f$ and (ii) $f^{\prime} * g=f * g^{\prime}$.
Solution (4 points) a) Using the substitution $u=x-y$, we have

$$
\int_{-t}^{t} f(x-y) g(y) d y=-\int_{x+t}^{x-t} f(u) g(x-u) d u=\int_{x-t}^{x+t} f(u) g(x-u) d u
$$

Using that f is compactly supported, choose B such that $f(u)=0$ if $|u|>B$. Thus, if $t>B+|x|$, then
$\int_{x-t}^{x+t} f(u) g(x-u) d u=\int_{x-t}^{-B} f(u) g(x-u)+\int_{-B}^{B} f(u) g(x-u) d u+\int_{B}^{x+t} f(u) g(x-u) d u$.
The first and third terms are zero since $f(u)$ is zero whenever $u<-B$ or $u>B$. Hence, our integral becomes

$$
\int_{-B}^{B} f(u) g(x-u) d u
$$

Similarly,

$$
\int_{-t}^{t} g(x-u) f(u) d u=\int_{-B}^{B} g(x-u) f(u) d u
$$

if $t>B$. And we have

$$
\begin{aligned}
(f * g)(x) & =\lim _{t \rightarrow \infty} \int_{x-t}^{x+t} f(u) g(x-u) d u=\int_{-B}^{B} f(u) g(x-u) d u \\
& =\lim _{t \rightarrow \infty} \int_{-t}^{t} g(x-u) f(u) d u=(g * f)(x)
\end{aligned}
$$

b) Integration by parts tells us

$$
\int_{-t}^{t} f^{\prime}(x-y) g(y) d y=-\left.f(x-y) g(y)\right|_{-t} ^{t}+\int_{-t}^{t} f(x-y) g^{\prime}(y) d y
$$

The limit of the first term on the right as $t \rightarrow \infty$ is

$$
\lim _{t \rightarrow \infty}(-f(x-t) g(t)+f(x+t) g(-t))=0
$$

since $g(t)=0$ and $g(-t)=0$ if $t>B^{\prime}$ for some $B^{\prime}>0$. Thus,

$$
\left(f^{\prime} * g\right)(x)=\lim _{t \rightarrow \infty} \int_{-t}^{t} f^{\prime}(x-y) g(y) d y=\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x-y) g^{\prime}(y) d y=\left(f * g^{\prime}\right)(x) .
$$

Applying part (a), we get $\left(f^{\prime} * g\right)(x)=\left(f * g^{\prime}\right)(x)=\left(g^{\prime} * f\right)(x)$ as desired.

Problem 5: Determine whether the series diverge, converge conditionally, or converge absolutely.
(a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+100}$ (b) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{2 n+100}{3 n+1}\right)^{n}$.

Solution (4 points) (a) Consider the function $f(x)=\frac{\sqrt{x}}{x+100}$. Note

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}(x+100)}-\frac{\sqrt{x}}{(x+100)^{2}} .
$$

One observes $f^{\prime}(x)<0$ if $x>100$. Hence, f is monotonically decreasing when $x>100$. Moroever, its easy to see $\lim _{x \rightarrow \infty} f(x)=0$. Now, we break up our sum into

$$
\sum_{n=1}^{100}(-1)^{n} \frac{\sqrt{n}}{n+100}+\sum_{n=101}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+100}
$$

The first term is a finite sum and the second term converges by Leibniz's rule (Thm. 10.14). Thus, our series converges.

However, our series does not converge absolutely. To see this, let $a_{n}=\frac{\sqrt{n}}{n+100}$, $b_{n}=\frac{1}{\sqrt{x}}$, and note $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$. By example one on page 398, we know that $\sum b_{n}$ diverges. Hence, by theorem 10.9, $\sum a_{n}$ diverges as well.
(b) This sum converges absolutely. Let $a_{n}=\left(\frac{2 n+100}{3 n+1}\right)^{n}$ and $b_{n}=\left(\frac{2}{3}\right)^{n}$. Observe $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$ and $\sum b_{n}$ converges since it is a geometric series. Hence, by theorem 10.9, $\sum a_{n}$ converges as well.

Problem 6: Prove $\sum_{n=1}^{\infty} a_{n}$ converges absolutely if $a_{n}=1 / n$ if n is a square and $a_{n}=1 / n^{2}$ otherwise.

Solution (4 points) Let $s_{N}=\sum_{n=1}^{N} a_{n}$ be the nth partial sum. Note

$$
s_{N}=\sum_{\substack{n \leq N \\ \text { not a square }}} \frac{1}{n^{2}}+\sum_{m \leq \sqrt{N}} \frac{1}{m^{2}} \leq \sum_{n \leq N} \frac{2}{n^{2}} .
$$

But, $\sum_{n \leq N} \frac{2}{n^{2}} \leq 2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$. This is a finite number, C, by example one on page 398. Since the partial sums s_{N} are an increasing sequence, bounded by C, they must converge by our lemma in problem 2.

Problem 7: (a) Prove that if $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges. Give a counterexample in which $\sum_{n=1}^{\infty} a_{n}^{2}$ converges but $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges.
(b) Find all real c for which the series $\sum_{n=1}^{\infty} \frac{(n!)^{c}}{(3 n)!}$ converges.

Solution (4 points) (a) Suppose $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. By problem 3, we must have $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. Thus, there exists N such that $\left|a_{n}\right|<1$ whenever $n>N$. In particular, we see $a_{n}^{2}=\left|a_{n}\right|^{2}<\left|a_{n}\right|$ if $n>N$. Splitting up our series, we have

$$
\sum_{n=1}^{\infty} a_{n}^{2}=\sum_{n=1}^{N} a_{n}^{2}+\sum_{n=N+1}^{\infty} a_{n}^{2} .
$$

The first sum is finite because it is a finite sum. We may compare the second series term by term to $\sum_{n=N+1}^{\infty}\left|a_{n}\right|$, which converges by hypothesis.
On the other hand, $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{2}$ converges by example one on the top of page 398. Yet, $\sum_{n=1}^{\infty} \frac{1}{n}$ is the divergent harmonic series.
(b) Let $b_{n}=\frac{(n!)^{c}}{(3 n)!}$. First, we apply the ratio test, and we get

$$
\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{c}}{(3 n+3)(3 n+2)(3 n+1)} .
$$

This limit is zero and the series converges if $c<3$. The limit is ∞ and the series diverges if $c>3$. For $c=3$, we analyze each term. Note

$$
\frac{(n!)^{3}}{(3 n)!}=1 \cdot \prod_{k=1}^{n} \frac{k}{n+k} \prod_{k=1}^{n} \frac{k}{2 n+k} \leq \frac{1}{2^{n}}
$$

since $2 k \leq n+k$ and $k \leq 2 n+k$. But, $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ converges because it is a geometric series. Thus, by the comparison test (Thm. 10.8), we conclude that our series converges when $c=3$.

Problem 8: (a) Prove that $\lim _{n \rightarrow \infty} \sum_{k=q n}^{p n} \frac{1}{k}=\log (p / q)$. (b) Show the series $1+$ $1 / 3+1 / 5-1 / 2-1 / 4+1 / 7+1 / 9+1 / 11-1 / 6-1 / 8 \ldots$ converges to $\log 2+\frac{1}{2} \log (3 / 2)$.

Solution (4 points) (a) We let $\epsilon>0$. First choose N such that $\frac{1}{p n}<\epsilon / 2$ for all $n \geq N$. Then for all $n \geq N$,

$$
\left(\sum_{k=q n}^{p n} \frac{1}{k}-\sum_{k=q n}^{p n-1} \frac{1}{k}\right)=\frac{1}{p n}<\epsilon / 2 .
$$

Now, choose M such that $\frac{p-q}{p q n}<\epsilon / 2$ for all $n \geq M$. As the function $f(x)=1 / x$ is monotonically decreasing, we get the estimate

$$
\left(\sum_{k=q n}^{p n-1} \frac{1}{k}-\int_{q n}^{p n} \frac{d x}{x}\right) \leq \frac{1}{q n}-\frac{1}{p n}=\frac{p-q}{n p q}<\epsilon / 2 .
$$

Now, choose $\tilde{N}=\max N, M$ and observe $\int_{q n}^{p n} \frac{d x}{x}=\left.\log (x)\right|_{q n} ^{p n}=\log (p / q)$. Thus, for all $n \geq \tilde{N}$, the triangle inequality and our work above implies:

$$
\left|\sum_{k=q n}^{p n} \frac{1}{k}-\log (p / q)\right| \leq\left|\sum_{k=q n}^{p n} \frac{1}{k}-\sum_{k=q n}^{p n-1} \frac{1}{k}\right|+\left|\sum_{k=q n}^{p n-1} \frac{1}{k}-\log (p / q)\right|<\epsilon / 2+\epsilon / 2=\epsilon
$$

(b) We begin by observing that

$$
s_{5 m}=\sum_{k=1}^{3 m} \frac{1}{2 k-1}-\sum_{k=1}^{2 m} \frac{1}{2 m} .
$$

Now,

$$
\sum_{k=1}^{3 m} \frac{1}{2 k-1}=\sum_{k=1}^{6 m} \frac{1}{k}-\sum_{k=1}^{3 m} \frac{1}{2 k}=\sum_{k=1}^{6 m} \frac{1}{k}-\sum_{k=1}^{3 m} \frac{1}{k}+\sum_{k=1}^{3 m} \frac{1}{2 k}
$$

and thus

$$
s_{5 m}=\sum_{k=3 m+1}^{6 m} \frac{1}{k}+\frac{1}{2} \sum_{k=2 m+1}^{3 m} \frac{1}{k}=\sum_{k=3 m}^{6 m} \frac{1}{k}+\frac{1}{2} \sum_{k=2 m}^{3 m} \frac{1}{k}+\left(\frac{1}{3 m}+\frac{1}{2 m}\right)
$$

Thus $\lim _{m \rightarrow \infty} s_{5 m}=\log (6 m / 3 m)+\frac{1}{2} \log (3 m / 2 m)=\log 2+\frac{1}{2} \log (3 / 2)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

