18.014 Problem Set 10 Solutions

Total: 12 points

Problem 1: Evaluate
a. $\lim _{x \rightarrow \infty} \frac{\log \left(a+b e^{x}\right)}{\sqrt{a+b x^{2}}}$ b. $\lim _{x \rightarrow 1^{-}} \log (x) \log (1-x)$.

Solution (4 points) For part (a), we first evaluate the limits $\lim _{x \rightarrow \infty} \frac{\log \left(a+b e^{x}\right)}{x}$ and $\lim _{x \rightarrow \infty} \frac{x}{\sqrt{a+b x^{2}}}$. The second limit can be computed as follows:

$$
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{a+b x^{2}}}=\lim _{x \rightarrow \infty} \sqrt{\frac{x^{2}}{a+b x^{2}}}=\lim _{t \rightarrow 0^{+}} \sqrt{\frac{1}{a t^{2}+b}}=\frac{1}{\sqrt{b}} .
$$

For the first limit, we use L'Hopital's rule to get

$$
\lim _{x \rightarrow \infty} \frac{\log \left(a+b e^{x}\right)}{x}=\lim _{x \rightarrow \infty} \frac{b e^{x} /\left(a+b e^{x}\right)}{1}=\lim _{x \rightarrow \infty} \frac{b}{a e^{-x}+b}=\lim _{t \rightarrow 0^{+}} \frac{b}{a e^{t}+b}=1 .
$$

Now, we know

$$
\lim _{x \rightarrow \infty} f(x) g(x)=\lim _{x \rightarrow \infty} f(x) \lim _{x \rightarrow \infty} g(x)
$$

whenever the two limits on the right hand side exist. Putting it all together, we have

$$
\lim _{x \rightarrow \infty} \frac{\log \left(a+b e^{x}\right)}{\sqrt{a+b x^{2}}}=\frac{1}{\sqrt{b}}
$$

For part (b), note $\lim _{x \rightarrow 1^{-}} \frac{1}{\log (x)}=\infty$ and $\lim _{x \rightarrow 1^{-}} \log (1-x)=\infty$. Using L'Hopital's rule, we see

$$
\lim _{x \rightarrow 1^{-}} \frac{\log (1-x)}{1 / \log (x)}=\lim _{x \rightarrow 1^{-}} \frac{-1 /(1-x)}{-1 / \log (x)^{2} x}=\lim _{x \rightarrow 1^{-}} \frac{x \log (x)^{2}}{(1-x)}
$$

Applying L'Hopital's rule again, we get

$$
\lim _{x \rightarrow 1^{-}} \frac{2 x \log (x)(1 / x)+\log (x)^{2}}{-1}=\lim _{x \rightarrow 1^{-}}\left(-2 \log (x)-\log (x)^{2}\right)=0
$$

Problem 2: For $|x|<1$, show
a. $\sum_{n=1}^{\infty} n^{2} x^{n}=\frac{x^{2}+x}{(1-x)^{3}} \quad$ b. $\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}=\frac{1}{(1-x)^{3}}$.

Solution (4 points) First, we show (b). Then we show (a). Recall

$$
\frac{1}{(1-x)}=\sum_{n=0}^{\infty} x^{n}
$$

for $|x|<1$. Taking the derivative of both sides, we get

$$
\frac{1}{(1-x)^{2}}=\sum_{n=1}^{\infty} n x^{n-1}
$$

for $|x|<1$. Taking another derivative yields

$$
\frac{2}{(1-x)^{3}}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}
$$

for $|x|<1$. Shifting the index and dividing by two, we get

$$
\frac{1}{(1-x)^{3}}=\sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^{n}
$$

for $|x|<1$. This is the statement for part (b). For part (a), we multiply both sides by $x+x^{2}$ to get

$$
\frac{x+x^{2}}{(1-x)^{3}}=\sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^{n+1}+\sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} x^{n+2}
$$

for $|x|<1$. Shifting the indices and summing the terms, we get

$$
\frac{x+x^{2}}{(1-x)^{3}}=\sum_{n=1}^{\infty} \frac{(n+1)(n)}{2} x^{n}+\sum_{n=2}^{\infty} \frac{(n)(n-1)}{2} x^{n}=1+\sum_{n=2}^{\infty} n^{2} x^{n}=\sum_{n=0}^{\infty} n^{2} x^{n}
$$

when $|x|<1$. This is the answer for part (a).

Problem 3: (a) Given that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for all x, show

$$
\sum_{n=0}^{\infty} \frac{n^{2} x^{n}}{n!}=\left(x^{2}+x\right) e^{x}
$$

for all x.
(b) Compute $\sum_{n=1}^{\infty} \frac{n^{3}}{n!}$.

Solution (4 points) (a) We start with $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ and we multiply both sides by $x+x^{2}$ to get

$$
\begin{aligned}
(x & \left.+x^{2}\right) e^{x}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}+\sum_{n=0}^{\infty} \frac{x^{n+2}}{n!}=x+\sum_{n=2}^{\infty}\left(\frac{x^{n}}{(n-1)!}+\frac{x^{n}}{(n-2)!}\right) \\
& =x+\sum_{n=2}^{\infty}\left(\frac{n x^{n}}{n!}+\frac{n(n-1) x^{n}}{n!}\right)=x+\sum_{n=2}^{\infty} \frac{n^{2} x^{n}}{n!}=\sum_{n=1}^{\infty} \frac{n^{2} x^{n}}{n!} .
\end{aligned}
$$

(b) Differentiating both sides of the equation in part (a) yields

$$
\left(x^{2}+3 x+1\right) e^{x}=\sum_{n=1}^{\infty} \frac{n^{3} x^{n-1}}{n!}
$$

Multiplying both sides by x gives

$$
\left(x^{3}+3 x^{2}+x\right) e^{x}=\sum_{n=1}^{\infty} \frac{n^{3} x^{n}}{n!}
$$

Plugging in $x=1$, we have

$$
5 e=\sum_{n=1}^{\infty} \frac{n^{3}}{n!} .
$$

Bonus: A function f is called uniformely continuous if for every $\epsilon>0$, there exists $\delta>0$ such that for all x, y with $|x-y|<\delta$, we have $|f(x)-f(y)|<\epsilon$. Prove that every continuous function on a closed interval $[a, b]$ is uniformely continuous.

Solution (4 points) Given $\epsilon>0$, by the small span theorem (Notes H.1) there exists

 a partition $x_{0}<x_{1}<\cdots<x_{n}$ such that $|f(x)-f(y)|<\frac{\epsilon}{2}$ whenever $x_{i} \leq x, y \leq x_{i+1}$ for some i. Put$$
\delta=\min _{i=0}^{n-1}\left\{\left|x_{i+1}-x_{i}\right|\right\}
$$

and suppose $|x-y|<\delta$. Without loss of generality, assume $x<y$ and assume $x_{i-1} \leq x<x_{i}$. Since $y-x<\delta$ and $x_{i+1}-x_{i} \geq \delta$, we must have $x_{i-1} \leq y \leq x_{i+1}$. There are two cases. If $x_{i-1} \leq y \leq x_{i}$, then

$$
|f(y)-f(x)|<\frac{\epsilon}{2}<\epsilon
$$

by our hypotheses and the small span theorem. If $x_{i}<y \leq x_{i+1}$, then we use the small span theorem twice to get

$$
|f(y)-f(x)| \leq\left|f(y)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f(x)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Regardless of case, we proved the desired result.

MIT OpenCourseWare
http://ocw.mit.edu

18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

