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18.014 Problem Set 10 Solutions 
Total: 12 points


Problem 1: Evaluate 
log(a + bex) 

a.	 lim b. lim log(x) log(1 − x). 
x→∞ 

√
a + bx2 x→1− 

Solution (4 points) For part (a), we first evaluate the limits limx→∞ 
log(a+bex) and 

x 
limx→∞ √a+

x
bx2 . The second limit can be computed as follows: 

x	 x2 1 1 
lim = lim = lim = .√

a + bx2 a + bx2 t 0+ at2 + b 
√

bx→∞ x→∞	 →

For the first limit, we use L’Hopital’s rule to get 

log(a + bex) bex/(a + bex) b	 b 
lim = lim	 = lim = lim = 1. 

x→∞ x x→∞ 1 x→∞ ae−x + b t→0+ aet + b 

Now, we know 
lim f(x)g(x) = lim f(x) lim g(x) 

x→∞ x→∞ x→∞ 

whenever the two limits on the right hand side exist. Putting it all together, we 
have 

log(a + bex) 1 
lim = . 

x→∞ 
√

a + bx2 
√

b 

For part (b), note limx→1− 
log(

1 
x) = ∞ and limx→1− log(1−x) = ∞. Using L’Hopital’s 

rule, we see 

log(1 − x) −1/(1 − x) x log(x)2 

lim = lim	 = lim . 
x	 1− 1/ log(x) x 1− −1/ log(x)2x x 1− (1 − x)→ →	 →

Applying L’Hopital’s rule again, we get 

2x log(x)(1/x) + log(x)2 

lim	 = lim (−2 log(x) − log(x)2) = 0. 
x	 1− x 1−→ −1	 →

Problem 2: For x < 1, show | | 
∞	

1�∞ x2 + x � (n + 1)(n + 2) 
a. n 2 x n = b.	 x n = . 

(1 − x)3	 2 (1 − x)3 
n=1	 n=0 
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Solution (4 points) First, we show (b). Then we show (a). Recall 

1 
∞

n = x 
(1 − x) 

n=0 

for |x| < 1. Taking the derivative of both sides, we get 

1 
∞

n−1 = nx 
(1 − x)2 

n=1 

for |x| < 1. Taking another derivative yields 

2 
∞

= n(n − 1)x n−2 

(1 − x)3 
n=2 

for |x| < 1. Shifting the index and dividing by two, we get 

1 
∞

(n + 2)(n + 1) n = x 
(1 − x)3 2 

n=0 

for |x| < 1. This is the statement for part (b). For part (a), we multiply both sides 
by x + x2 to get 

x + x
∞

n+1 
�∞ (n + 2)(n + 1) n+2 

2 � (n + 2)(n + 1) 
= x + x 

(1 − x)3 2 2 
n=0 n=0 

for |x| < 1. Shifting the indices and summing the terms, we get 

x + x2 

= 
∞

(n + 1)(n) 
x n + 

∞
(n)(n − 1) 

x n = 1 + 
∞

n 2 x n = 
∞

n 2 x n 

(1 − x)3 2 2 
n=1 n=2 n=2 n=0 

when |x| < 1. This is the answer for part (a). 

x xProblem 3: (a) Given that e = ∞ 
n=0 n

n 

! for all x, show 

�∞ n2xn 

= (x 2 + x)e x 

n! 
n=0 

for all x. 
∞

n� 3 

(b) Compute . 
n! 

n=1 
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x xSolution (4 points) (a) We start with e = ∞ 
n=0 n

n 

! and we multiply both sides by 
x + x2 to get �∞ xn+1 � n+2 ∞

xn n∞
x � xx(x + x 2)e = + = x + + 

n! n! (n − 1)! (n − 2)!
n=0 n=0 n=2 � n n � 2 n � 2 n∞

nx n(n − 1)x
∞

n x
∞

n x
= x + + = x + = . 

n! n! n! n! 
n=2 n=2 n=1 

(b) Differentiating both sides of the equation in part (a) yields � 3x
∞

n n−1 
x(x 2 + 3x + 1)e = . 

n! 
n=1 

Multiplying both sides by x gives � 3 n 

(x 3 + 3x 2 + x)e x = 
∞

n x
. 

n! 
n=1 

Plugging in x = 1, we have 
∞

n� 3 

5e = . 
n! 

n=1 

Bonus: A function f is called uniformely continuous if for every � > 0, there exists 
δ > 0 such that for all x, y with |x − y| < δ, we have |f(x) − f(y)| < �. Prove that 
every continuous function on a closed interval [a, b] is uniformely continuous. 

Solution (4 points) Given � > 0, by the small span theorem (Notes H.1) there exists 
a partition x0 < x1 < · · · < xn such that |f(x)−f(y)| < � whenever xi ≤ x, y ≤ xi+12 
for some i. Put 

n−1 
δ = min 

i=0 
{|xi+1 − xi|} 

and suppose |x − y| < δ. Without loss of generality, assume x < y and assume 
xi−1 ≤ x < xi. Since y − x < δ and xi+1 − xi ≥ δ, we must have xi−1 ≤ y ≤ xi+1. 
There are two cases. If xi−1 ≤ y ≤ xi, then 

|f(y) − f(x)| < 
2 

< � 

by our hypotheses and the small span theorem. If xi < y ≤ xi+1, then we use the 
small span theorem twice to get 

|f(y) − f(x)| ≤ |f(y) − f(xi)| + |f(xi) − f(x)| < 
2

+
2

= �. 

Regardless of case, we proved the desired result. 
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