Unit 1: Real Numbers

Pset1 - Due September 17 (4 points each)

1. Prove Theorem I.11: If $a b=0$ then $a=0$ or $b=0$
2. Prove Theorem I.25: If $a<c$ and $b<d$ then $a+b<c+d$.
3. Apostol page 43: 1 j
4. Course Notes: A - Prove Theorem 6
5. Course Notes: A - Prove Theorem 12
6. Course Notes: A.10:6

Bonus: (Only to be attempted once other problems are completed) Let

$$
A_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}, \quad G_{n}=\left(x_{1} x_{2} \ldots x_{n}\right)^{1 / n}
$$

represent the arithmetic and geometric mean, respectively, for a set of n positive real numbers.

- Prove that $G_{n} \leq A_{n}$ for $n=2$.
- Use induction to show $G_{n} \leq A_{n}$ for any $n=2^{k}$ where k is a positive integer.
- Now for any positive integer n, suppose $n<2^{m}$ for some integer m. Using the set $\left\{x_{1}, x_{2}, \ldots, x_{n}, A_{n}, A_{n}, \ldots, A_{n}\right\}$ where the A_{n} appears $2^{m}-n$ times in the set, show that $G_{n} \leq A_{n}$.

MIT OpenCourseWare
http://ocw.mit.edu
18.014 Calculus with Theory

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

