Study Guide for Unit 3

Important definitions. You should know the meanings of the following terms. (All of them are important, so none of them will be bold-faced.)

Term	Lecture	Reference	
Differentials	Lecture 13	§5.2	p. 164
Antiderivative	Lecture 13	$\S{5.2}$	p. 171
Antidifferentiation	Lecture 13	$\S{5.2}$	p. 171
Indefinite integral	Lecture 13	$\S{5.2}$	p. 171
Integrand	Lecture 13	$\S{5.2}$	p. 171
Constant of integration	Lecture 13	$\S{5.2}$	p. 172
Sigma notation (Σ)	Lecture 14	$\S6.3$	p. 194
Riemann sum	Lecture 14	$\S6.4$	p. 199, 203
Definite integral/Riemann integral	Lecture 14	$\S6.4$	p. 201, 203
Differential equation	Lecture 17	§5.4	p. 178
General/particular solution	Lecture 17	§5.4	p. 179

Skills checklist. Be able to do each of the following.

- 1. Solve related rates problems: Determine an unknown rate-of-change using a constraint equation and a known rate-of-change.
- 2. Use Newton's method to approximate the zeros of a differentiable function.
- 3. Compute differentials of differentiable functions.
- 4. Compute antiderivatives of simple functions, e.g., polynomial functions.
- 5. Use substitution to compute antiderivatives of more complicated functions.
- 6. Compute simple Riemann sums by induction.
- 7. Use the Fundamental Theorem of Calculus to compute definite integrals.
- 8. Solve separable differential equations.