Lecture 4. September 15, 2005
Homework. No new problems.
Practice Problems. Course Reader: 1F-1, 1F-6, 1F-7, 1F-8.

1. Product rule example. For $u=\sqrt{3 x+1}$, what is $u^{\prime}(x)$? Since $u \cdot u=3 x+1,(u \cdot u)^{\prime}=$ $(3 x+1)^{\prime}=3$. By the product rule, $(u \cdot u)^{\prime}=u^{\prime} \cdot u+u \cdot u^{\prime}=2 u u^{\prime}$. Thus solving,

$$
u^{\prime}(x)=3 /(2 u)=3(3 x+1)^{-1 / 2} / 2 .
$$

2. The derivative of u^{n}. From above, $\left(u^{2}\right)^{\prime}$ equals $2 u u^{\prime}$. By a similar computation, $\left(u^{3}\right)^{\prime}$ equals $3 u^{2} u^{\prime}$. This suggests a pattern,

$$
\frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x} .
$$

This can be proved by induction on n. For $n=1,2$ and 3 , it was checked. Let n be a particular integer (for instance, 70119209472933054321). For that integer, suppose the result is known,

$$
\frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x}
$$

The goal is to prove the result for $n+1$, that is,

$$
\frac{d\left(u^{n+1}\right)}{d x}=(n+1) u^{n} \frac{d u}{d x} .
$$

Let $v=u^{n}$. Then u^{n+1} equals $u v$. So, by the product rule,

$$
\frac{d\left(u^{n+1}\right)}{d x}=\frac{d(u v)}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x} .
$$

Plugging in $v=u^{n}$, this is,

$$
\frac{d\left(u^{n+1}\right)}{d x}=\frac{d u}{d x} \cdot\left(u^{n}\right)+u \frac{d\left(u^{n}\right)}{d x} .
$$

By the induction hypothesis, $d\left(u^{n}\right) / d x$ equals $n u^{n-1}(d u / d x)$. Plugging in,

$$
\frac{d\left(u^{n+1}\right)}{d x}=\frac{d u}{d x} \cdot\left(u^{n}\right)+u\left(n u^{n-1} \frac{d u}{d x}\right) .
$$

This simplfies to,

$$
\frac{d\left(u^{n+1}\right)}{d x}=u^{n} \frac{d u}{d x}+n u^{n} \frac{d u}{d x}=(n+1) u^{n} \frac{d u}{d x} .
$$

Thus, the result for $n+1$ follows from the result for n. By induction, the result holds for every n.
3. The derivative of x^{a}, a a fraction. Let a be a fraction m / n and let $u(x)$ be x^{a}. Then u^{n} equals x^{m}. Thus,

$$
\frac{d\left(u^{n}\right)}{d x}=\frac{d\left(x^{m}\right)}{d x}
$$

which equals $m x^{m-1}$. By the above, $d\left(u^{n}\right) / d x$ equals $n u^{n-1}(d u / d x)$. Thus,

$$
n u^{n-1} \frac{d u}{d x}=m x^{m-1} .
$$

Solving for $d u / d x$,

$$
\frac{d u}{d x}=\frac{m x^{m-1}}{n u^{n-1}}=\frac{m x^{m-1}}{n\left(x^{m / n}\right)^{n-1}} .
$$

One of the basic rules of exponents is that $\left(a^{b}\right)^{c}$ equals $a^{b c}$. Thus the denominator $n\left(x^{m / n}\right)^{n-1}$ equals $n x^{m / n(n-1)}$, which equals $n x^{m-m / n}$. Thus,

$$
\frac{d u}{d x}=\frac{m x^{m-1}}{n x^{m-m / n}}=\frac{m}{n} x^{m-1} \cdot x^{m / n-m} .
$$

Another basic rule of exponents is that $a^{b} \cdot a^{c}$ equals a^{b+c}. Thus,

$$
\frac{d u}{d x}=\frac{m}{n} x^{(m-1)+(m / n-m)}=\frac{m}{n} x^{m / n-1} .
$$

Remembering that m / n is just a, and $u(x)$ is x^{a}, this finally gives,

$$
\frac{d\left(x^{a}\right)}{d x}=a x^{a-1}
$$

4. The chain rule. Let y be a function of $x, y=f(x)$, and let u be a function of $y, u=g(y)$. Then u is a function of $x, u=g(f(x))$. This function is a composite function, and is denoted by,

$$
(g \circ f)(x)=g(f(x))
$$

What is the derivative of a composite function? The claim is that,

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)
$$

This is often easier to remember in the form,

$$
\frac{d u}{d x}=\frac{d u}{d y} \cdot \frac{d y}{d x}
$$

This also suggests the proof,

$$
(g \circ f)^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta y} \cdot \frac{\Delta y}{\Delta x},
$$

where y_{0} equals $f\left(x_{0}\right), u_{0}$ equals $g\left(y_{0}\right)=g\left(f\left(x_{0}\right)\right), \Delta y$ equals $f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)=f\left(x_{0}+\Delta x\right)-y_{0}$, and Δu equals $g\left(y_{0}+\Delta y\right)-g\left(y_{0}\right)=g\left(f\left(x_{0}+\Delta x\right)\right)-g\left(f\left(x_{0}\right)\right)$. So long as Δy is nonzero, the fraction in the limit is defined. And, as Δx approaches 0 , also Δy approaches 0 . Thus the limit breaks up as,

$$
(g \circ f)^{\prime}\left(x_{0}\right)=\lim _{\Delta y \rightarrow 0} \frac{\Delta u}{\Delta y} \cdot \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=g^{\prime}\left(y_{0}\right) \cdot f^{\prime}\left(x_{0}\right)
$$

Thus $(g \circ f)^{\prime}\left(x_{0}\right)$ equals $g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)$.
Example. Let $y(x)$ equals $1+x^{2}$, and let $u(y)$ equal $1 / y=y^{-1}$. Then $y^{\prime}(x)=0+2 x=2 x$ and $u^{\prime}(y)=-y^{-2}$. Thus, by the chain rule,

$$
\frac{d}{d x}\left(\frac{1}{1+x^{2}}\right)=\frac{-1}{y^{2}}(2 x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}} .
$$

5. Implicit differentiation. This method has already been used many times. Given a function $y(x)$ satisfying some equation involving both x and y, formally differentiate each side of the equation with respect to x and then try to solve for y^{\prime}.
