Lecture 23. November 8, 2005
Homework. Problem Set 6 Part I: (i) and (j); Part II: Problem 2.
Practice Problems. Course Reader: 4I-1, 4I-4, 4I-6.

1. Tangent lines to parametric curves. This short section was not explicitly discussed for general parametric curves. It was discussed for polar curves, which are a special collection of parametric curves.

Given a parametric curve,

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}\right.
$$

what is the slope of the tangent line at $(f(a), g(a))$? The relevant differentials are,

$$
d x=f^{\prime}(t) d t, \quad d y=g^{\prime}(t) d t
$$

If $g^{\prime}(a)$ is nonzero, then the slope of the tangent line is,

$$
\frac{d y}{d x}(a)=\left.\frac{f^{\prime}(t) d t}{g^{\prime}(t) d t}\right|_{t=a}=\frac{f^{\prime}(a)}{g^{\prime}(a)} .
$$

In particular, for a function $r=r(\theta)$, the associated polar curve is,

$$
\left\{\begin{array}{l}
x=r(\theta) \cos (\theta), \\
y=r(\theta) \sin (\theta)
\end{array}\right.
$$

Thus the differentials are,

$$
\begin{aligned}
d x & =\left[r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)\right] d \theta, \\
d y & =\left[r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)\right] d \theta
\end{aligned}
$$

Therefore the slope of the tangent line is,

$$
\frac{d y}{d x}=\frac{r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)}{r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)}
$$

2. Tangent lines for polar curves. Although the formula above is perfectly correct, it is a bit long to remember. There is a slightly different packaging that is much easier to remember. Define α to be the angle from the horizontal ray emanating from $(x(\theta), y(\theta))$ in the positive x-direction, and the tangent line. To be precise, there are two such angles, differing by π. The defining equation for α is,

$$
\tan (\alpha)=\frac{d y}{d x}
$$

And, of course,

$$
\tan (\theta)=\frac{y}{x}
$$

Define ψ to be the difference between α and θ,

$$
\psi=\alpha-\theta
$$

The angle addition/subtraction formulas for $\tan (\theta)$ are,

$$
\tan \left(\phi_{1}+\phi_{2}\right)=\frac{\tan \left(\phi_{1}\right)+\tan \left(\phi_{2}\right)}{1-\tan \left(\phi_{1}\right) \tan \left(\phi_{2}\right)}, \tan \left(\phi_{1}-\phi_{1}\right)=\frac{\tan \left(\phi_{1}\right)-\tan \left(\phi_{2}\right)}{1+\tan \left(\phi_{1}\right) \tan \left(\phi_{2}\right)}
$$

Therefore,

$$
\tan (\psi)=\tan (\alpha-\theta)=\frac{\tan (\alpha)-\tan (\theta)}{1+\tan (\alpha) \tan (\theta)} .
$$

Substituting in the equations for $\tan (\theta)$ and $\tan (\alpha)$ from above gives,

$$
\tan (\psi)=\frac{(d y / d x)-(y / x)}{1+(y / x)(d y / d x)}
$$

To simplify this, imagine multiplying both numerator and denominator by $x d x$ and manipulate formally,

$$
\tan (\psi)=\frac{x d y-y d x}{x d x+y d y}
$$

The actual justification of this is a little more involved, but the formal manipulation leads to the correct equation.
To compute the denominator in the expression, differentiate both sides of,

$$
r^{2}=x^{2}+y^{2}
$$

to get,

$$
2 r d r=2 x d x+2 y d y
$$

or equivalently,

$$
x d x+y d y=r(\theta) r^{\prime}(\theta) d \theta
$$

To compute the numerator in the expression, differentiate both sides of,

$$
\tan (\theta)=\frac{y}{x}
$$

to get,

$$
\sec ^{2}(\theta) d \theta=\frac{d y}{x}-\frac{y d x}{x^{2}}=\frac{1}{x^{2}}(x d y-y d x)
$$

Now substitute $x=r \cos (\theta)$ in the denominator to get,

$$
\sec ^{2}(\theta) d \theta=\frac{1}{r^{2} \cos ^{2}(\theta)}(x d y-y d x)=\frac{\sec ^{2}(\theta)}{r^{2}}(x d y-y d x)
$$

Cancelling $\sec ^{2}(\theta)$ and multiplying both sides by r^{2} gives,

$$
x d y-y d x=r^{2} d \theta
$$

Thus the fraction for $\tan (\psi)$ is,

$$
\tan (\psi)=\frac{x d y-y d x}{x d x+y d y}=\frac{r^{2} d \theta}{r r^{\prime} d \theta}
$$

Simplifying gives,

$$
\tan (\psi)=r(\theta) / r^{\prime}(\theta)
$$

Example. Consider the cardioid, discussed in recitation,

$$
r(\theta)=a(1+\cos (\theta))
$$

The formula for ψ is,

$$
\tan (\psi)=\frac{r}{r^{\prime}}=\frac{a(1+\cos (\theta))}{-a \sin (\theta)}=\frac{1+\cos (\theta)}{-\sin (\theta)} .
$$

To simplify this, write $\theta=2(\theta / 2)$ and use the double-angle formulas to get,

$$
\frac{1+\cos (2(\theta / 2))}{-\sin (2(\theta / 2))}=\frac{1+\left(\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2)\right)}{-2 \sin (\theta / 2) \cos (\theta / 2)}
$$

Replacing $1-\sin ^{2}(\theta / 2)$ in the numerator by $\cos ^{2}(\theta / 2)$, this simplfies to,

$$
\frac{2 \cos ^{2}(\theta / 2)}{-2 \sin (\theta / 2) \cos (\theta / 2)}=-\cot (\theta / 2)
$$

Of course there is an identity,

$$
-\cot (u)=\tan (u-\pi / 2)
$$

Altogether, this gives,

$$
\tan (\psi)=-\cot (\theta / 2)=\tan (\theta / 2-\pi / 2)
$$

Therefore,

$$
\psi=(\theta-\pi) / 2
$$

Since α equals $\theta+\psi$, this gives,

$$
\alpha=(3 \theta-\pi) / 2 .
$$

In particular, the angle of the tangent line to the cardioid at $\theta=\pi / 2$ is $\alpha=\pi / 4$.
3. Arc length in polar coordinates. As discussed previously, the formula for arc length of a parametric curve is,

$$
d s=\sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t
$$

In the case of a parametric curve, this becomes a bit simpler. The differentials are,

$$
\begin{aligned}
& d x=\left(r^{\prime}(\theta) \cos (\theta)-r(\theta) \sin (\theta)\right) d \theta, \\
& d y=\left(r^{\prime}(\theta) \sin (\theta)+r(\theta) \cos (\theta)\right) d \theta
\end{aligned}
$$

Squaring gives,

$$
\begin{aligned}
& (d x)^{2}=\left(\left(r^{\prime}\right)^{2} \cos ^{2}(\theta)-2 r r^{\prime} \sin (\theta) \cos (\theta)+r^{2} \sin ^{2}(\theta)\right)(d \theta)^{2}, \\
& (d y)^{2}=\left(\left(r^{\prime}\right)^{2} \sin ^{2}(\theta)+2 r r^{\prime} \sin (\theta) \cos (\theta)+r^{2} \cos ^{2}(\theta)\right)(d \theta)^{2} .
\end{aligned}
$$

Summing down columns gives,

$$
(d x)^{2}+(d y)^{2}=\left[\left(r^{\prime}\right)^{2}+r^{2}\right](d \theta)^{2}
$$

Taking square roots gives the differential element of arc length for a polar curve,

$$
d s=\sqrt{\left[r^{\prime}(\theta)\right]^{2}+[r(\theta)]^{2}} d \theta
$$

Example. For the cardioid,

$$
r(\theta)=a(1+\cos (\theta))
$$

the derivative is,

$$
r^{\prime}(\theta)=-a \sin (\theta)
$$

Thus,

$$
\left(r^{\prime}\right)^{2}+r^{2}=a^{2}(1+\cos (\theta))^{2}+(-a \sin (\theta))^{2}=a^{2}\left(1+2 \cos (\theta)+\cos ^{2}(\theta)\right)+a^{2} \sin ^{2}(\theta)
$$

This simplifies to,

$$
2 a^{2}(1+\cos (\theta))
$$

To simplify this further, write $\theta=2(\theta / 2)$ and use the double-angle formula to get,

$$
2 a^{2}(1+\cos (2(\theta / 2)))=2 a^{2}\left(1+\cos ^{2}(\theta / 2)-\sin ^{2}(\theta / 2)\right)=2 a^{2}\left(2 \cos ^{2}(\theta / 2)\right)=4 a^{2} \cos ^{2}(\theta / 2)
$$

Taking square roots gives,

$$
d s=2 a \cos (\theta / 2)
$$

Note, this answer is only correct for $-\pi \leq \theta \leq \pi$. Outside this range, we might have to take the other square root to get a positive number. In particular, the total arc length of the cardioid is,

$$
s=\int d s=\int_{\theta=-\pi}^{\theta=\pi} 2 a \cos (\theta / 2) d \theta=2 a\left(\left.2 \sin (\theta / 2)\right|_{-\pi} ^{\pi}=2 a((2)-(-2))\right.
$$

Simplifying, the total arc length of the cardioid is,

$$
s=8 a .
$$

Surface areas of surfaces of revolution can be computed in a similar way. This was only briefly discussed in lecture. Here is a continuation of the previous problem.
Example. The top half of the cardioid,

$$
r(\theta)=a(1+\cos (\theta)), \quad 0 \leq \theta \leq \pi
$$

is revolved about the x-axis to give a fairly good approximation of the surface of an apple. What is the surface area of this apple?

Since we are revolving about the x-axis, the radius of each slice is y. Therefore the differential element of surface area is,

$$
d A=2 \pi y d s
$$

Substituting in $y=r(\theta) \sin (\theta)=a(1+\cos (\theta)) \sin (\theta)$, and substituting in for $d s$ gives,

$$
d A=2 \pi[a(1+\cos (\theta)) \sin (\theta)](2 a \cos (\theta / 2) d \theta) .
$$

To simplify this, substitute both,

$$
1+\cos (\theta)=2 \cos ^{2}(\theta / 2)
$$

and,

$$
\sin (\theta)=2 \sin (\theta / 2) \cos (\theta / 2)
$$

to get,

$$
d A=4 \pi a^{2}\left(2 \cos ^{2}(\theta / 2)\right)(2 \sin (\theta / 2) \cos (\theta / 2)) \cos (\theta / 2) d \theta=16 \pi a^{2} \cos ^{4}(\theta / 2) \sin (\theta / 2) d \theta
$$

Thus the total surface area is,

$$
A=\int d A=\int_{\theta=0}^{\pi} 16 \pi a^{2} \cos ^{4}(\theta / 2) \sin (\theta / 2) d \theta
$$

To evaluate this integral, substitute,

$$
\begin{array}{c|c}
u=\cos (\theta / 2) & u(\pi)=0 \\
d u=-(1 / 2) \sin (\theta / 2) d \theta, & u(0)=1
\end{array}
$$

The new integral is,

$$
A=16 \pi a^{2} \int_{u=1}^{u=0} u^{4}(-2 d u)=32 \pi a^{2} \int_{u=0}^{u=1} u^{4} d u=32 \pi a^{2}\left(\left.\frac{u^{5}}{5}\right|_{0} ^{1}\right.
$$

This evaluates to give the total surface area of the apple,

$$
A=32 \pi a^{2} / 5
$$

5. Area of a region enclosed by a polar curve. What is the area of the planar region enclosed by a cardioid? By the same sort of reasoning as for volumes and arc lengths, the differential element of area of the triangular region bounded by the rays $\theta, \theta+d \theta$ and the curve $r(\theta)$ is,

$$
d A=\frac{r(\theta)^{2}}{2} d \theta
$$

Thus the area enclosed by a polar curve is,

$$
A=\int d A=\int_{\theta=a}^{\theta=b} \frac{r(\theta)^{2}}{2} d \theta
$$

18.01 Calculus

In particular, the area enclosed by the cardioid is,

$$
A=\int_{0}^{2 \pi} \frac{a^{2}(1+\cos (\theta))^{2}}{2} d \theta
$$

This expands to give,

$$
\frac{a^{2}}{2} \int_{0}^{2 \pi} 1+2 \cos (\theta)+\cos (\theta)^{2} d \theta
$$

To simplify the last part of the integrand, substitute,

$$
\cos (\theta)^{2}=\frac{1+\cos (2 \theta)}{2}
$$

to get,

$$
\frac{a^{2}}{2} \int_{0}^{2 \pi} 1+2 \cos (\theta)+\frac{1+\cos (2 \theta)}{2} d \theta=\frac{a^{2}}{4} \int_{0}^{2 \pi} 3+4 \cos (\theta)+\cos (2 \theta) d \theta
$$

Using the Fundamental Theorem of Calculus, this equals,

$$
\frac{a^{2}}{4}\left(3 \theta+4 \sin (\theta)+\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{2 \pi}\right.
$$

Evaluating gives,

$$
A=3 \pi a^{2} / 2
$$

