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18.01 Calculus Jason Starr 
Fall 2005 

Lecture 23. November 8, 2005 

Homework. Problem Set 6 Part I: (i) and (j); Part II: Problem 2. 

Practice Problems. Course Reader: 4I1, 4I4, 4I6. 

1. Tangent lines to parametric curves. This short section was not explicitly discussed for 
general parametric curves. It was discussed for polar curves, which are a special collection of 
parametric curves. 
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Given a parametric curve,

x = f (t), 
y = g(t), 

what is the slope of the tangent line at (f (a), g(a))? The relevant differentials are, 

dx = f �(t)dt, dy = g�(t)dt. 

If g�(a) is nonzero, then the slope of the tangent line is, 

dy f �(t)dt 
= 
f �(a) 

t=a g (a)

.
(a) =


dx g (t)dt 

In particular, for a function r = r(θ), the associated polar curve is,


x = r(θ) cos(θ), 
y = r(θ) sin(θ) 

Thus the differentials are, 

dx = [r�(θ) cos(θ) − r(θ) sin(θ)]dθ, 
dy = [r�(θ) sin(θ) + r(θ) cos(θ)]dθ. 

Therefore the slope of the tangent line is, 

dy r�(θ) sin(θ) + r(θ) cos(θ) 
= . 

dx r�(θ) cos(θ) − r(θ) sin(θ) 

2. Tangent lines for polar curves. Although the formula above is perfectly correct, it is a bit 
long to remember. There is a slightly different packaging that is much easier to remember. Define 
α to be the angle from the horizontal ray emanating from (x(θ), y(θ)) in the positive xdirection, 
and the tangent line. To be precise, there are two such angles, differing by π. The defining equation 
for α is, 

dy
tan(α) = . 

dx 
And, of course, 

y
tan(θ) = . 

x 
Define ψ to be the difference between α and θ, 

ψ = α − θ. 

The angle addition/subtraction formulas for tan(θ) are, 

tan(φ1 + φ2) = 
tan(φ1) + tan(φ2) tan(φ1) − tan(φ2) 

. 
1 − tan(φ1) tan(φ2) 

, tan(φ1 − φ1) = 
1 + tan(φ1) tan(φ2) 
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Therefore, 

tan(ψ) = tan(α − θ) = 
tan(α) − tan(θ) 

. 
1 + tan(α) tan(θ) 

Substituting in the equations for tan(θ) and tan(α) from above gives, 

tan(ψ) = 
(dy/dx) − (y/x) 

. 
1 + (y/x)(dy/dx) 

To simplify this, imagine multiplying both numerator and denominator by xdx and manipulate 
formally, 

tan(ψ) = 
xdy − ydx

. 
xdx + ydy 

The actual justification of this is a little more involved, but the formal manipulation leads to the 
correct equation. 

To compute the denominator in the expression, differentiate both sides of, 

2 2 2 r = x + y , 

to get, 
2rdr = 2xdx + 2ydy, 

or equivalently, 
xdx + ydy = r(θ)r�(θ)dθ. 

To compute the numerator in the expression, differentiate both sides of, 

y
tan(θ) = , 

x 

to get, 
dy ydx 12sec (θ)dθ = 
x 
− 

x2 
= 

2 
(xdy − ydx). 

x

Now substitute x = r cos(θ) in the denominator to get, 

1 sec2(θ)2sec (θ)dθ = 
r2 cos2(θ)

(xdy − ydx) = (xdy − ydx). 
2r

Cancelling sec2(θ) and multiplying both sides by r2 gives, 

xdy − ydx = r 2dθ. 

Thus the fraction for tan(ψ) is, 

r2dθ 
tan(ψ) = 

xdy − ydx 
= . 

xdx + ydy rr�dθ 
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Simplifying gives, 
tan(ψ) = r(θ)/r�(θ) . 

Example. Consider the cardioid, discussed in recitation, 

r(θ) = a(1 + cos(θ)). 

The formula for ψ is, 
r a(1 + cos(θ)) 1 + cos(θ)

tan(ψ) = = = . 
r� −a sin(θ) − sin(θ) 

To simplify this, write θ = 2(θ/2) and use the doubleangle formulas to get, 

1 + cos(2(θ/2)) 1 + (cos2(θ/2) − sin2(θ/2)) 
= . 

− sin(2(θ/2)) −2 sin(θ/2) cos(θ/2) 

Replacing 1 − sin2(θ/2) in the numerator by cos2(θ/2), this simplfies to, 

2 cos2(θ/2) 
−2 sin(θ/2) cos(θ/2) 

= − cot(θ/2). 

Of course there is an identity, 
− cot(u) = tan(u − π/2). 

Altogether, this gives, 
tan(ψ) = − cot(θ/2) = tan(θ/2 − π/2). 

Therefore, 
ψ = 

Since α equals θ + ψ, this gives, 
α = 

In particular, the angle of the tangent line to the cardioid at θ = π/2 is α = π/4. 

(θ − π)/2. 

(3θ − π)/2. 

3. Arc length in polar coordinates. As discussed previously, the formula for arc length of a 
parametric curve is, 

ds = (dx/dt)2 + (dy/dt)2dt. 

In the case of a parametric curve, this becomes a bit simpler. The differentials are, 

dx = (r�(θ) cos(θ) − r(θ) sin(θ))dθ, 
dy = (r�(θ) sin(θ) + r(θ) cos(θ))dθ. 

Squaring gives, 

(dx)2 = ((r�)2 cos2(θ) − 2rr� sin(θ) cos(θ) + r2 sin2(θ))(dθ)2 , 
(dy)2 = ((r�)2 sin2(θ) + 2rr� sin(θ) cos(θ) + r2 cos2(θ))(dθ)2 . 
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Summing down columns gives, 

2(dx)2 + (dy)2 = [(r�)2 + r ](dθ)2 . 

Taking square roots gives the differential element of arc length for a polar curve, 

ds = 
� 

[r�(θ)]2 + [r(θ)]2dθ. 

Example. For the cardioid, 
r(θ) = a(1 + cos(θ)), 

the derivative is, 
r�(θ) = −a sin(θ). 

Thus, 

2 2 2(r�)2 + r = a (1 + cos(θ))2 + (−a sin(θ))2 = a (1 + 2 cos(θ) + cos 2(θ)) + a 2 sin2(θ). 

This simplifies to, 
2a 2(1 + cos(θ)). 

To simplify this further, write θ = 2(θ/2) and use the doubleangle formula to get, 

2 2 2 2 22a (1 + cos(2(θ/2))) = 2a (1 + cos 2(θ/2) − sin2(θ/2)) = 2a (2 cos 2(θ/2)) = 4a cos (θ/2). 

Taking square roots gives, 
ds = 

Note, this answer is only correct for −π ≤ θ ≤ π. Outside this range, we might have to take the 
other square root to get a positive number. In particular, the total arc length of the cardioid is, 

2a cos(θ/2). 

� � θ=π 
π s = ds = 2a cos(θ/2)dθ = 2a (2 sin(θ/2)|−π = 2a((2) − (−2)). 

θ=−π 

Simplifying, the total arc length of the cardioid is, 

s = 8a. 

Surface areas of surfaces of revolution can be computed in a similar way. This was only briefly

discussed in lecture. Here is a continuation of the previous problem.


Example. The top half of the cardioid,


r(θ) = a(1 + cos(θ)), 0 ≤ θ ≤ π, 

is revolved about the xaxis to give a fairly good approximation of the surface of an apple. What 
is the surface area of this apple? 

 



�


�
 �
 �
 � �� �


�


18.01 Calculus Jason Starr 
Fall 2005 

Since we are revolving about the xaxis, the radius of each slice is y. Therefore the differential 
element of surface area is, 

dA = 2πyds. 

Substituting in y = r(θ) sin(θ) = a(1 + cos(θ)) sin(θ), and substituting in for ds gives, 

dA = 2π[a(1 + cos(θ)) sin(θ)](2a cos(θ/2)dθ). 

To simplify this, substitute both, 

1 + cos(θ) = 2 cos 2(θ/2), 

and, 
sin(θ) = 2 sin(θ/2) cos(θ/2), 

to get, 

4dA = 4πa 2(2 cos 2(θ/2))(2 sin(θ/2) cos(θ/2)) cos(θ/2)dθ = 16πa 2 cos (θ/2) sin(θ/2)dθ. 

Thus the total surface area is, � π 
4A = dA = 16πa 2 cos (θ/2) sin(θ/2)dθ. 

θ=0 

To evaluate this integral, substitute, 

u = cos(θ/2) u(π) = 0, 
du = −(1/2) sin(θ/2)dθ, u(0) = 1 

The new integral is, 

5u

5


u=0 u=1 1 

0 

.
4A = 16πa 2 u (−2du) = 32πa 2 u 4du = 32πa 2 

u=1 u=0 

This evaluates to give the total surface area of the apple, 

A = 32 2/5.πa

5. Area of a region enclosed by a polar curve. What is the area of the planar region enclosed 
by a cardioid? By the same sort of reasoning as for volumes and arc lengths, the differential element 
of area of the triangular region bounded by the rays θ, θ + dθ and the curve r(θ) is, 

r(θ)2 

dA = dθ. 
2 

Thus the area enclosed by a polar curve is, 

A = dA =

� θ=b r(θ)2 

dθ. 
2θ=a 
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In particular, the area enclosed by the cardioid is,


2π a2(1 + cos(θ))2 

A = dθ. 
20 

This expands to give, 
2 � 2π a

1 + 2 cos(θ) + cos(θ)2dθ. 
2 0 

To simplify the last part of the integrand, substitute, 

cos(θ)2 = 
1 + cos(2θ) 

,
2 

to get, 
a2 � 2π 1 + cos(2θ) a2 � 2π 

1 + 2 cos(θ) + dθ = 3 + 4 cos(θ) + cos(2θ)dθ. 
2 0 2 4 0 

Using the Fundamental Theorem of Calculus, this equals, 

2π2 1a
3θ + 4 sin(θ) + sin(2θ)


2 
. 

4
 0 

Evaluating gives, 
A = 3 2/2.πa


