

Lecture 30 November 25, 2009

Biochemistry: Amino Acids

Test 3

All things are made of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another.

> R. Feynmann, R. Leighton, M. Sands The Feynmann Lectures on Physics

Courtesy of California Institute of Technology. Used with permission.

Name	Structure (at neutral pH)	Name	Structure (at neutral pH)	
Nonpolar (Hydrophobic) R Groups H		Polar (Hydrophilic) R Groups CH ₂ OH		
Glycine (Gly)	H_3N^+ – CH – CO_2^-	Serine (Ser)	H ₃ N ⁺ -CH-CO ₂ ⁻	
Alanine (Ala)	H_3N^+ – $CHCO_2^-$ CH_3 – CH_3 – $CH_$	Threonine (Thr)	CH ₃ CH H ₃ N ⁺ -CH-CO ₂ ⁻ OH	
Valine (Val)	H ₃ N ⁺ -CH-CO ₂ ⁻ CH ₃ CH ² CH ₃			
Leucine (Leu)	H_3N^+ -CH-CO ₂ -	Tyrosine (Tyr)	H_3N^+ -CH-CO ₂ - CH-SH	
Leuenie (Leu)	CH ₃ CH ₂ CH ₂ CH ₃	Cysteine (Cys)	H_3N^+ -CH-CO ₂ -	
Isoleucine (Ile)	H_3N^+ -CH-CO ₂ - H_2C -CH ₂		C-NH2	
Proline (Pro)	H ₂ C CH N CO ₂ -	Asparagine (Asn)	$\dot{C}H_2$ H_3N^+ - CH - CO_2^-	
	CH ₃ I S		C-NH ₂	
	CH ₂ CH ₂	Glutamine (Gln)	H_3N^+ -CH-CO ₂ -	
Methionine (Met)	H_3N^+ - $\dot{C}H$ - CO_2^-	Negatively C	y Charged R Groups	
	\bigcirc		CO_2^- CH ₂	
Phonyloloning (Pho)	CH ₂	Aspartic acid (Asp)	H ₃ N ⁺ -CH-CO ₂ ⁻	
rnenylalanine (rne)				
	у м-н	Glutamic acid (Glu)	СН ₂ H ₃ N ⁺ —CH—CO ₂ ⁻	
Tryptophan (Trp)	H_3N^+ -CH-CO ₂ -		Continued	

Courtesy of John Wiley & Sons. Used with permission. Source: Spencer, J. N., G. M. Bodner, and L. H. Rickard. *Chemistry: Structure and Dynamics*. 2nd edition, supplement. New York, NY: John Wiley & Sons, 2003.

Courtesy of John Wiley & Sons. Used with permission. Source: Spencer, J. N., G. M. Bodner, and L. H. Rickard. *Chemistry: Structure and Dynamics*. 2nd edition, supplement. New York, NY: John Wiley & Sons, 2003.

Amino Acid	Si	de-Chain	
		рКА	
Alanine	Ala	A -	
Cysteine	Cys	C 8.33	
Aspartic Acid	Asp	D 3.90	
Glutamic Acid	Glu	E 4.07	
Phenylalanine	Phe	F -	
Glycine	Gly	G -	
Histidine	His	H 6.04	
Isoleucine	Ile	I -	
Lysine	Lys	K 10.79	
Leucine	Leu	L -	
Methionine	Met	М -	
Asparagine	Asn	N -	
Proline	Pro	Р -	
Glutamine	Gln	Q -	
Arginine	Arg	R 12.48	
Serine	Ser	S -	
Threonine	Thr	Т -	
Valine	Val	V -	
Tryptophan	Trp	W -	
Tyrosine	Tyr	Y 10.13	

compiled by Andrew Magyar

Courtesy of Andrew Magyar. Used with permission. compiled by Andrew Magyar

Courtesy of Andrew Magyar. Used with permission. compiled by A

compiled by Andrew Magyar

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Chiral and Achiral Molecules

X ~ O CONC. 9 chiral speciel D path length Through Same

Fits receptor site, leading to a response.

Does not fit receptor site, no response.

Interaction of chiral molecules with biological receptors

Image by MIT OpenCourseWare.

extreme kinetics: the Halifax Explosion

* Thursday, December 6, 1917

* Imo, Belgian, relief ship

* at 8:45 a.m. *Imo* hits *Mont Blanc*, missing TNT, striking picric acid stored directly beneath drums of benzol on deck, sparks

toluene = methyl benzene

trinitrotoluene = TNT

© Wikipedia: various authors and the Wikimedia Foundation; license CC BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Government Home> Natural Resources > Stewardship and Outreach Programs > Christmas Tree Information > Boston Christmas Tree

Natural Resources

Search

Site Index

Government of Nova Scotia Natural Resources

Related Links

Halifax Explosion (off-site)

Tips and Information About Natural Christmas Trees

Christmas Festival of Trees

Choose and Cut Operators (off site)

Christmas Tree Council of Nova Scotia (off-site)

About Balsam Fir

The Boston Christmas Tree

For more than 30 years, Nova Scotia has donated a giant evergreen each year to the people of Boston as a thank you for their assistance following the 1917 Halifax Explosion.

This year's tree is a 40 foot white spruce located in New Ross, Lunenburg County. It is being provided by Mr. & Mrs. Alan Broome. The white spruce will serve as the focal point for the annual tree-lighting ceremony on Thursday Nov 30, 6:30 p.m. to 8 p.m. at the Boston Common.

Ross Pentz, Department of Natural Resource's Christmas tree extension specialist for Western Nova Scotia, is co-ordinating activities on behalf of the province. Department of Transportation and Public Works staff are transporting the tree to Boston. Officials expect the tree will arrive in Boston on Friday, Nov. 17, at which time the tree will be set up on the Boston Common.

About the Boston Christmas Tree

The tree usually comes from a private land owner and is selected by the Nova Scotia Department of Natural Resources based upon the following specifications:

- · Balsam fir, white spruce or red spruce
- Forty-five to fifty feet (45'-50') in height
- healthy with good color
- Medium to heavy density
- Uniform and symmetrical
- Easy to access.

Courtesy of the Province of Nova Scotia. Used with permission.

The Boston Christmas Tree, version 2007

Courtesy of the Province of Nova Scotia. Used with permission.

14 m white spruce from the Annapolis Valley, Nova Scotia

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.