

Lecture 10 September 30, 2009

Hybridized & Molecular Orbitals; Paramagnetism

3.091 Test #1 Wednesday, October 7, 2009 Room Assignments

A – Ha: He - Sm: So - ∞: 10-250 26-100 4-270

% ionic character = $\left\{1 - \exp\left(-\frac{1}{4}(\Delta X)^2\right)\right\} \times 100$ \checkmark % Ionic Character of a Single Chemical Bond		
Difference in Electronegativity	%IC (by L. Pauling)	%IC (by Hannay & Smyth)
0.1	0.2	1.6
0.2	1.0	3.3
0.3	2.2	5.1
0.4	3.9	7.0
0.5	6.1	8.9
0.6	8.6	11
0.7	12	13
0.8	15	15
0.9	18	17
1.0	22	20
1.1	26	22
1.2	30	24
1.3	34	27
1.4	39	29
1.5	43	32
1.6	47	35
1.7	51	37
1.8	56	40
1.0	59	43
2.0	63	46
2.1	67	49
2.1	70	52
2.2	73	55
2.5	76	59
2.5	70	62
2.5	82	65
2.0	84	69
2.7	86	72
2.0	88	76
2.9	80	20
3.0	01	83
3.1	91	0.5
3.2	92	8/

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Copyright © 2003 John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons., Inc.

Source: Spencer, J. N., G. M. Bodner, and L. H. Rickard. *Chemistry: Structure and Dynamics*. 2nd edition. New York, NY: John Wiley & Sons, 2003.

Copyright © 2003 John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons., Inc. Source: Spencer, J. N., G. M. Bodner, and L. H. Rickard. *Chemistry: Structure and Dynamics*. 2nd edition. New York, NY: John Wiley & Sons, 2003.

Copyright © 2003 John Wiley & Sons, Inc.

Reprinted with permission of John Wiley & Sons., Inc. Source: Spencer, J. N., G. M. Bodner, and L. H. Rickard. *Chemistry: Structure and Dynamics*. 2nd edition. New York, NY: John Wiley & Sons, 2003.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

2s-2p_z interaction

Averill, B., and P. Eldredge. *Chemistry: Principles, Patterns, and Applications*. Flat WorldKnowledge, 2011. ISBN: 9781453331224.

Image by MIT OpenCourseWare.

paramagnetism in liquid oxygen

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Extremes in electronegativity

NaI: $\Delta \chi = 1.73$

CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, *but*... when the concentration nears 50%

(equal numbers of donors & acceptors)

●[™] electron transfer occurs ●[™] !

 $Cs \rightarrow Cs^{\dagger} + e$ Aufe \rightarrow Au

Extremes in electronegativity

NaI: $\Delta \chi = 1.73$

CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, *but*... when the concentration nears 50%

(equal numbers of donors & acceptors)

electron transfer occurs

metallic melt turns into molten salt!!

- 🖙 clear, colorless liquid
- 🖙 big drop in electrical conductivity
- shift from electronic to ionic conduction

Specific electrical conductivity of liquid Cs – Au alloys as a function of concentration (Hoshino *et al.* 1975)

Extremes in electronegativity

NaI: $\Delta \chi = 1.73$

CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, *but*... when the concentration nears 50%

(equal numbers of donors & acceptors)

●[™] electron transfer occurs ●[™] !

metallic melt turns into molten salt!!

- 🖙 clear, colorless liquid
- 🖙 big drop in electrical conductivity
- shift from electronic to ionic conduction

🖙 cesium auride

Arceref.

Extremes in electronegativity

NaI: $\Delta \chi = 1.73$

CsAu: $\Delta \chi = 1.75$

Cs and Au, both metals, melt to form metallic liquids, *but*... when the concentration nears 50%

(equal numbers of donors & acceptors)

●[™] electron transfer occurs ●[™] !

metallic melt turns into molten salt!!

- 🖙 clear, colorless liquid
- 🖙 big drop in electrical conductivity
- shift from electronic to ionic conduction

🖙 cesium auride

Arceref.

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.