Session \#25: Homework Solutions

Problem \#1

$\mathrm{Bi}_{2} \mathrm{~S}_{3}$ dissolves in water according to the following reaction:

$$
\mathrm{Bi}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{Bi}^{3+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq})
$$

for which the solubility product, $K_{\text {sp }}$, has the value of 1.6×10^{-72} at room temperature.
(a) At room temperature how many moles of $\mathrm{Bi}_{2} \mathrm{~S}_{3}$ will dissolve in 3.091×10^{6} liters of water?
(b) How many Bi^{3+} ions will be found in the solution described in part (a)?

Solution

(a)

$$
\begin{aligned}
& \mathrm{Bi}_{2} \mathrm{~S}_{3}=2 \mathrm{Bi}^{3+}(\mathrm{aq})+3 \mathrm{~S}^{2-}(\mathrm{aq}) \\
& \quad \therefore\left[\mathrm{Bi}^{3+}\right]=2 \mathrm{C}_{\mathrm{s}} \text { and }\left[\mathrm{s}^{2}\right]=3 \mathrm{C}_{\mathrm{s}} \\
& \therefore \mathrm{~K}_{\mathrm{sp}}=\left(2 \mathrm{C}_{\mathrm{s}}\right)^{2}\left(3 \mathrm{C}_{\mathrm{s}}\right)^{3}=4 \mathrm{C}_{\mathrm{s}}^{2} \cdot 27 \mathrm{C}_{\mathrm{s}}^{3}=108 \mathrm{C}_{\mathrm{s}}^{5} \\
& \therefore \mathrm{C}_{\mathrm{s}}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{108}\right)^{1 / 5}=1.715 \times 10^{-15} \mathrm{~mol} / \mathrm{L} \\
& \therefore \text { in } 3.091 \times 10^{6} \mathrm{~L} \Rightarrow 5.3 \times 10^{-9} \mathrm{~mol} \mathrm{Bi}_{2} \mathrm{~S}_{3}
\end{aligned}
$$

(b) $\left[\mathrm{Bi}^{3+}\right]=2 \mathrm{C}_{\mathrm{s}}=1.06 \times 10^{-8} \mathrm{~mol}$

$$
\mathrm{N}_{\mathrm{Av}} \text { ions } / \mathrm{mol} \Rightarrow 6.38 \times 10^{15} \mathrm{Bi}^{3+} \text { ions in the } 3.091 \times 10^{6} \text { liters of water of }
$$ part (a)

Problem \#2

Calculate the volume of 0.25 M Nal that would be needed to precipitate all the g^{2+} ion from 45 mL of a $0.10 \mathrm{M} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ solution according to the following reaction:

$$
2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Hgl}_{2}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

Solution

$$
\begin{aligned}
& 2 \mathrm{Nal}(\mathrm{aq})+\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{HgI}_{2}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq}) \\
& \frac{0.10 \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~L}} \times 0.045 \mathrm{~L}=4.5 \times 10^{-3} \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \\
& 4.5 \times 10^{-3} \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{2 \mathrm{~mol} \mathrm{Nal}}{1 \mathrm{~mol} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}}=9.00 \times 10^{-3} \mathrm{~mol} \mathrm{Nal} \\
& \frac{9.00 \times 10^{-3} \mathrm{~mol} \mathrm{Nal}}{0.25 \frac{\mathrm{~mol} \mathrm{Nal}}{\mathrm{~L}}}=3.6 \times 10^{-2} \mathrm{~L} \times \frac{1000 \mathrm{ml}}{1 \mathrm{~L}}=36 \mathrm{~mL} \mathrm{Nal}
\end{aligned}
$$

Problem \#3

(a) Strontium fluoride, SrF_{2}, has a K_{sp} value in water of 2.45×10^{-9} at room temperature.
Calculate the solubility of SrF_{2} in water. Express your answer in units of molarity.
(b) Calculate the solubility of SrF_{2} in 0.03 M NaF (aq). Express your answer in units of molarity.
Assume that NaF is completely dissociated in water.

Solution

(a) $\mathrm{SrF}_{2}=\mathrm{Sr}^{2+}+2 \mathrm{~F}^{-} \quad \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}, \quad$ but $[\mathrm{F}]=2\left[\mathrm{Sr}^{2+}\right]=2 \mathrm{C}_{\mathrm{s}}$

$$
\therefore \mathrm{K}_{\mathrm{sp}}=\mathrm{c}_{\mathrm{s}}\left(2 \mathrm{c}_{\mathrm{s}}\right)^{2}=4 \mathrm{c}_{\mathrm{s}}^{3} \quad \therefore \quad \mathrm{c}_{\mathrm{s}}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{4}\right)^{1 / 3}=8.49 \times 10^{-4} \mathrm{M}
$$

(b) $\mathrm{NaF}=\mathrm{Na}^{+}+\mathrm{F}^{-}$
$\therefore[F]=0.003 \mathrm{M}$, which dominates the other equilibrium

$$
\therefore \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \Rightarrow\left[\mathrm{Sr}^{2+}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{~F}^{-}\right]^{2}}=\frac{2.45 \times 10^{-9}}{(0.03)^{2}}=2.72 \times 10^{-6} \mathrm{M}
$$

$$
\therefore\left[\mathrm{Sr}^{2+}\right]=\mathrm{C}_{\mathrm{s}}=2.72 \times 10^{-6} \mathrm{M}
$$

MIT OpenCourseWare
http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry

 Fall 2009For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

