Session #25: Homework Solutions

Problem #1

Bi₂S₃ dissolves in water according to the following reaction:

 Bi_2S_3 (s) \Leftrightarrow 2 Bi^{3+} (aq) + 3 S^{2-} (aq)

for which the solubility product, $K_{sp},$ has the value of 1.6 \times 10 $^{-72}$ at room temperature.

- (a) At room temperature how many moles of Bi_2S_3 will dissolve in 3.091 \times 10^6 liters of water?
- (b) How many Bi³⁺ ions will be found in the solution described in part (a)?

Solution

(a)
$$Bi_2S_3 = 2 Bi^{3+}(aq) + 3 S^{2-}(aq)$$

 $\therefore [Bi^{3+}] = 2 C_s \text{ and } [s^2] = 3 C_s$
 $\therefore K_{sp} = (2 C_s)^2 (3 C_s)^3 = 4 C_s^2 \cdot 27 C_s^3 = 108 C_s^5$
 $\therefore C_s = \left(\frac{K_{sp}}{108}\right)^{1/5} = 1.715 \text{ x } 10^{-15} \text{ mol/L}$
 $\therefore \text{ in } 3.091 \text{ x } 10^6 \text{ L} \Rightarrow 5.3 \text{ x } 10^{-9} \text{ mol } Bi_2S_3$

(b)
$$[Bi^{3+}] = 2 C_s = 1.06 \times 10^{-8} \text{ mol}$$

 N_{Av} ions/mol $\Rightarrow~6.38 \ x \ 10^{15} \ Bi^{3_+}$ ions in the 3.091 x 10^6 liters of water of part (a)

Problem #2

Calculate the volume of 0.25 M NaI that would be needed to precipitate all the g^{2+} ion from 45 mL of a 0.10 M Hg(NO₃)₂ solution according to the following reaction:

$$2 \operatorname{Nal}(aq) + \operatorname{Hg}(\operatorname{NO}_3)_2(aq) \rightarrow \operatorname{Hgl}_2(s) + 2 \operatorname{NaNO}_3(aq)$$

Solution

2 NaI(*aq*)+Hg(NO₃)₂(*aq*) → HgI₂(*s*) + NaNO₃(*aq*)

$$\frac{0.10 \text{ mol Hg(NO_3)}_2}{1 \text{ L}} \times 0.045 \text{ L} = 4.5 \times 10^{-3} \text{ mol Hg(NO_3)}_2$$

4.5 x 10⁻³ mol Hg(NO₃)₂ x $\frac{2 \text{ mol Nal}}{1 \text{ mol Hg(NO_3)}_2} = 9.00 \text{ x } 10^{-3} \text{ mol Nal}$

$$\frac{9.00 \text{ x } 10^{-3} \text{ mol Nal}}{0.25 \frac{\text{mol Nal}}{\text{L}}} = 3.6 \text{ x } 10^{-2} \text{ L x } \frac{1000 \text{ml}}{1 \text{ L}} = 36 \text{ mL Nal}$$

Problem #3

- (a) Strontium fluoride, SrF₂, has a K_{sp} value in water of 2.45×10^{-9} at room temperature. Calculate the solubility of SrF₂ in water. Express your answer in units of molarity.
- (b) Calculate the solubility of SrF₂ in 0.03 M NaF (aq). Express your answer in units of molarity.
 Assume that NaF is completely dissociated in water.

Solution

(a) $SrF_2 = Sr^{2+} + 2F^ K_{sp} = [Sr^{2+}][F^-]^2$, but $[F] = 2[Sr^{2+}] = 2c_s$

$$\therefore K_{sp} = c_s (2 c_s)^2 = 4 c_s^3 \qquad \therefore \qquad c_s = \left(\frac{K_{sp}}{4}\right)^{1/3} = 8.49 \times 10^{-4} M$$

(b) NaF = Na⁺ + F⁻

 \therefore [F] = 0.003 M, which dominates the other equilibrium

$$\therefore K_{sp} = [Sr^{2+}][F^{-}]^{2} \implies [Sr^{2+}] = \frac{K_{sp}}{[F^{-}]^{2}} = \frac{2.45 \times 10^{-9}}{(0.03)^{2}} = 2.72 \times 10^{-6} \text{ M}$$

$$\therefore [Sr^{2+}] = c_s = 2.72 \times 10^{-6} M$$

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.