

Lecture 22 November 2, 2009

Engineering Glass Properties; Introduction to Kinetics

	Composition, w/o								
Туре	SiO ₂	Na ₂ O	K ₂ O	CaO	MgO	B ₂ O ₃	Al ₂ O ₃	Other	Properties or uses
Soda-lime	72	14		9	4		1		Window glass
Silica glass (fused quartz)	99.5+								High-temperature applications; low coefficient of ex- pansion
96% silica glass	96.3	<0.2	<0.2			2.9	0.4		Comparable to fused quartz
Borosilicate	80.5	3.8	0.5			12.9	2.2		Resistant to heat and to chemicals
Light flint optical	54	1	8					37PbO	High index of refraction
Surface- strengthened glass	55	16	2	2		2	19	4TiO ₂	Cookware
Glass-ceramic	56				15		20	9TiO ₂	Radomes

working point: ($\eta \approx 10^5$ poise) temperature above which it is possible to *form* the glass, *i.e.*, press, draw, shape

softening point: ($\eta \approx 10^8$ poise) temperature above which glass *flows under its own weight*

annealing point: ($\eta \approx 10^{13}$ poise) temperature above which *residual stresses can be relieved within 15 min*

strain point: ($\eta \approx 10^{15}$ poise) temperature below which glass can be *rapidly cooled* without introducing internal stresses capable of fracture

1 Pa s = 10 poise; $\eta_{water} \approx 10^{-2}$ poise

why do we study kinetics?

productivity & resource utilization
competitiveness

energy & the environment

societal: science in service of humanity

on the topic of airbags

accelerometer 🖙 electric current

 $10 \text{ Na} + 2 \text{ KNO}_3 \longrightarrow 5 \text{ Na}_2 \text{O} + \text{K}_2 \text{O} + \text{N}_2$

 $5 \text{Na}_2 \text{O} + \text{K}_2 \text{O} + \text{n} \text{SiO}_2 \longrightarrow \text{alkaline silicate glass}$

Radiocarbon Dating

Willard F. Libby: Nobel Prize 1960

* in the upper atmosphere, radioactive carbon is produced naturally by cosmic rays which generate neutrons: ${}_{7}N^{14} + {}_{0}n^{1} \rightleftharpoons {}_{6}C^{14} + {}_{1}p^{1}$

* ${}_{6}C^{14}$ enters the carbon cycle, \therefore ratio of ${}_{6}C^{14}/{}_{6}C^{12}$ constant in all organisms (as is ${}_{6}C^{13}/{}_{6}C^{12}$)

* upon death, conc. of ${}_{6}C^{14}$ falls via ${}_{6}C^{14} \rightleftharpoons {}_{7}N^{14} + {}_{-1}\beta^{0-1}$

* measure ${}_{6}C^{14}/{}_{6}C^{12}$ to determine age $(t_{\frac{1}{2}} = 5730 \text{ y})$

Half-lives and applications of some radioactive isotopes

Radioactive Isotope	Half-Life	Typical Uses		
Hydrogen-3 (tritium)	12.32 yr	Biochemical tracer		
Carbon-11	20.33 min	PET scans (biomedical imaging)		
Carbon-14	5.70 x 10 ³ yr	Dating of artifacts		
Sodium-24	14.951 hr	Cardiovascular system tracer		
Phosphorus-32	14.26 days	Biochemical tracer		
Potassium-40	1.248 x 10 ⁹ yr	Dating of rocks		
Iron-59	44.495 days	Red blood cell lifetime tracer		
Cobalt-60	5.2712 yr	Radiation therapy for cancer		
Technetium-99m*	6.006 h	Biomedical imaging		
Iodine-131	8.0207 days	Thyroid studies tracer		
Radium-226	1.600 x 10 ³ yr	Radiation therapy for cancer		
Uranium-238	4.468 x 10 ⁹ yr	Dating of rocks and Earth's crust		
Americium-241	432.2 yr	Smoke detectors		

*Denotes *metastable*, where an excited nucleus decays to the ground state of the same isotope.

Image by MIT OpenCourseWare. Adapted from Table 14.7 in Averill, Bruce, and Patricia Eldredge. *Chemistry: Principles, Patterns, and Applications.* San Francisco, CA: Pearson/Benjamin Cummings, 2007. ISBN: 080538039.

Image by MIT OpenCourseWare. Adapted from Fig. 14.13 in Averill, Bruce, and Patricia Eldredge. *Chemistry: Principles, Patterns, and Applications*. San Francisco, CA: Pearson/Benjamin Cummings, 2007. ISBN: 080538039.

Image removed due to copyright restrictions. Please see p. 54 in Van Biema, David. "Science and the Shroud." *Time*, April 20, 1998.

Image removed due to copyright restrictions. Please see p. 58 in Van Biema, David. "Science and the Shroud." *Time*, April 20, 1998.

c.f. 13543 labs in 3 countries: 1260-1390 Geoffroi de Charny

But wait! There was a fire in 1532 at Chambéry

fire → water + smoke bacteria, mold paraffin → expert error? MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.