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Linguistic Phonetics���
The acoustics of vowels	
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•  No class on Tuesday 10/13 (Tuesday is a Monday)	

Readings:	

•  Johnson chapter 6 (for this week)	

•  Liljencrants & Lindblom (1972) (for next week)	

Assignment:	

•  Modeling lip-rounding, due 10/15	
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The Acoustics of Vowels	


Source-Filter models:	

•  Source: voicing (usually)	

•  Filter characteristics can be given a basic but 

useful analysis using simple tube models.	

•  Tube models can be supplemented by perturbation 

theory for approximate analysis of the effects of 
wide constrictions.	
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Low vowels [A, a, œ] 	

•  Pharyngeal constriction	


•  Since the back tube is much narrower than the front tube, each can 
reasonably be approximated by a tube closed at one end and open at 
the other.	


•  The resonances of the combined tubes deviate from the values we 
would calculate for these configurations in isolation because the 
resonators are acoustically coupled.	


•  The degree of coupling depends on the difference in cross-sectional 
areas.	
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ɑThe shape of the vocal tract in the vowel [   ] as in father schematized as two tubes.

Image by MIT OCW.



Low vowels [A, a, œ] 	
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Non-low vowels (e.g. [i, e])	

• Short constriction in the mouth

	


•  The back cavity can be approximated by a tube closed at 
both ends.	


•  The front cavity is approximated by a tube closed at one 
end.	


•  Neglects coupling. The degree of coupling depends on the 
cross-sectional area of the constriction.	


•  How do we account for the F1 of high vowels?	
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Helmholtz resonators

•  The back cavity and the constriction together form a 
resonant system called a Helmholtz resonator.	


•  If the length of the constriction is short, the air in it 
vibrates as a mass on the ‘spring’ formed by the air in 
the back cavity.	


•  Resonant frequency, 	
 f = c

2π Vl
= c

c 2π Ablblc

€ 

c A c A
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Non-low vowels - nomogram
	


€ 

f =
c
2π

Ac

Ablblc€ 

Fn =
nc
2L

€ 

Fn =
(2n −1)c
4L

front cavity	


back cavity	


back cavity + constriction	


•  How would you model a mid vowel?	
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Perturbation Theory (Chiba and Kajiyama 1941) 	

•  Constriction near a 

point of maximum 
velocity (Vn) lowers the 
associated formant 
frequency.	


•  Constriction near a 
point of maximum 
pressure raises the 
associated formant 
frequency. 	
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Perturbation Theory (Chiba and Kajiyama 1941) 	

•  What is the effect of a 

pharyngeal constriction?	

•  Does this correspond to the 

tube model above?	

•  How do you raise F2 

maximally?	
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Perturbation Theory vs. two-tube models 	

•  Our simple tube models ignore acoustic coupling and are 

therefore most valid where constrictions are narrow.	

Perturbation theory accounts for the effects of small 
perturbations of a uniform tube, and thus is most accurate 
for open constrictions.	

Mrayati et al (1988): perturbation theory is generally valid 
for constrictions greater than 0.8 cm2, and two-tube 
models are valid for a constriction of 0.05 cm2 or less, 
with a transitional region in between.	


Mrayati, Carré & Guérin (1988). Distinctive regions and modes. 
Speech Communication 7, 257-286.	


• 

• 

• 
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American English [ɹ] 	

•  American English [ɹ] is characterized by an exceptionally 

low F3 (<2000 Hz).	


Reproduced from Espy-Wilson, Carol Y., Suzanne E. Boyce, Michel Jackson, Shrikanth Narayanan, and Abeer Alwan.
"Acoustic modeling of American English/r." The Journal of the Acoustical Society of America 108, no. 1 (2000):
343-356. doi: https://doi.org/10.1121/1.429469, with the permission of the Acoustical Society of America.
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•  American English [ɹ] is 
produced in a variety of 
ways across speakers and 
contexts (Alwan et al 1997 
JASA, Westbury et al 1998, 
Speech Comm.).	


•  A basic distinction that is 
often made: ‘bunched’ 
vs. ‘retroflex’.	

–  But there appears to be a 

continuum of variants.	
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Reproduced from Narayanan, Shrikanth S., Abeer A. Alwan, and Katherine Haker.
"Toward articulatory-acoustic models for liquid approximants based on MRI and
EPG data. Part I. The laterals." The Journal of the Acoustical Society of America
101, no. 2 (1997): 1064-1077. doi: https://doi.org/10.1121/1.418030, with
the permission of the Acoustical Society of America.
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Perturbation Theory (Chiba and Kajiyama 1941)
 	
A nice story about Am. Eng. 

[®]	

•  Three constriction: labial 

(lip protrusion/rounding), 
palatal (bunching or 
retroflexion), and 
pharyngeal.	


•  All 3 are near velocity 
maxima for F3, hence very 
low F3.	


•  But Espy-Wilson et al 
(2000) argue actual 
constrictions are in the 
wrong place 	
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Espy-Wilson et al (2000) argue 
from MRI data that:	


•  Actual constrictions are in the 
wrong places, e.g. pharyngeal 
constriction is too high.	


•  Constrictions are too narrow 
to apply perturbation theory.	


•  Argue that F3 is a front cavity 
resonance.	


•  Low due to length (bunched) 
or sub-lingual cavity (retro) + 
lip constriction. (How long?)	


•  Or: lip constriction is narrow 
enough for the front cavity to 
form a Helmholtz resonator.	
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Reproduced from Narayanan, Shrikanth S., Abeer A. Alwan, and Katherine Haker.
"Toward articulatory-acoustic models for liquid approximants based on MRI and
EPG data. Part I. The laterals." The Journal of the Acoustical Society of America
101, no. 2 (1997): 1064-1077. doi: https://doi.org/10.1121/1.418030, with
the permission of the Acoustical Society of America.
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Constriction locations and area functions for [i] 
vowels

Story et al 
(1998), MRI

Ladefoged & 
Maddieson 
(1996) – mean 
tongue positions	


Fant (1960), Russian [i]
F2 2250 Hz, F3 3200 Hz
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Hillenbrand et al (1995) – Michigan English vowel formants	
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Lip rounding 	

•  Lip-rounding also involves lip protrusion so it both 

lengthens the vocal tract and introduces a constriction at 
the lips. 	


•  Perturbation theory: All formants have a velocity 
maximum at the lips, so a constriction at the lips should 
lower all formants.	


•  Lengthening the vocal tract also lowers formants.	

•  Tube models: The effect of a constriction at the lips is 

equivalent to lengthening the front cavity. Protrusion 
actually lengthens the front cavity.	


•  This lowers the resonances of the front cavity - in front 
vowels the lowest front cavity resonance is usually F3, in 
back vowels it is F2.	
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Lip rounding 	

•  Tube models 2: Fant (1960) suggests the front cavity plus 

lip constriction can form a helmholtz resonator.	
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Fant’s (1960) nomograms

• A more complex tube model for vowels:
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Nomogram showing variation in constriction location and lip-rounding - 
narrow constriction (Amin = 0.65 cm2)	
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Nomogram showing variation in constriction location and lip-rounding - 
wider constriction (Amin = 2.5 cm2)	
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Nomogram showing variation in constriction location and degree.	
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