Format for the IVL data: Column 1 : data point number Column 2 : voltage [V] Column 3 : current [A] Column 4 : luminance [V]

Format for the Spectrum data: Column 1 : Wavelength [nm] Column 2: Intensity [arb. units]

Your spectrum should look something like this:

The photodiode detection set-up was like this:

So, fraction of light captured (α) is ~0.6

To get quantum efficiency (η) from luminance voltage (L) :

$$\eta = \frac{(L - L_{background})[V] * 1e - 5[A/V] * R_d[W/A] * \lambda_{max}}{\alpha * I * 1241}$$

Where Rd is the responsivity of the detector in W/A:

λ	Ra
405	6.0
530	3.0
630	2.5

Your photovoltaic device I-V characteristics should look something like this.

Tang, Appl Phys Lett. 48, 183 (1986).

What are the CIE coordinates of the OLED? To answer this question use the X, Y, Z photopic response curves in the Excel file "Calculation of CIE coordinates.xls". Multiply the OLED spectrum with each of the X, Y, and Z curves, and add all the values in each columns to obtain three numbers *x*, *y*, *z*, respectively. The (x',y') CIE coordinates are then given by x' = x / (x+y+z), y' = y / (x+y+z). Plot the (x',y') coordinates on the CIE plot as below. Your coordinates should match the color of the OLED.

