Format for the IVL data:
Column 1 : data point number
Column 2 : voltage [V]
Column 3 : current [A]
Column 4 : luminance [V]

Format for the Spectrum data:
Column 1 : Wavelength [nm]
Column 2: Intensity [arb. units]

Your spectrum should look something like this:

The photodiode detection set-up was like this:

Output intensity profile from OLED: $I(\Theta) \sim \cos ^{2} \Theta$
So, fraction of light captured (α) is ~ 0.6

To get quantum efficiency (η) from luminance voltage (L) :

$$
\eta=\frac{\left(L-L_{\text {background }}\right)(V]^{*} 1 e-5[A / V]^{*} R_{d}[W / A]^{*} \lambda_{\max }}{\alpha^{*} I^{*} 1241}
$$

Where Rd is the responsivity of the detector in W/A:

λ	Rd
405	6.0
530	3.0
630	2.5

Your I-L-V curves should ultimately look something like this:

Your photovoltaic device I-V characteristics should look something like this.

Tang, Appl Phys Lett. 48, 183 (1986).

What are the CIE coordinates of the OLED?
To answer this question use the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ photopic response curves in the Excel file "Calculation of CIE coordinates.xls". Multiply the OLED spectrum with each of the X, Y, and Z curves, and add all the values in each columns to obtain three numbers x, y, z, respectively. The (x^{\prime}, y^{\prime}) CIE coordinates are then given by $x^{\prime}=x /(x+y+z), y^{\prime}=y /(x+y+z)$. Plot the (x^{\prime}, y^{\prime}) coordinates on the CIE plot as below. Your coordinates should match the color of the OLED.

CIE Plot

