
1

Massachusetts Institute of Technology 
6.867 Machine Learning, Fall 2006 

Problem Set 1 Solutions 

Section A (background questions) 

1. Let’s begin with	 a little math. Let us denote by Pn the probability that n people with 
randomly chosen birthdays (chosen uniformly from the year) have no common birthdays. 
Clearly P1 = 1; 

365 − n 
Pn+1 = Pn;

365 
· 

after n days have been taken, the chance that we will get one of the remaining free days is 
(365 − n)/365. If we expand this, we get the following formula: 

Pn+1 = 
365 − n 

365 
· Pn 

= 
365 − n 

365 
· 365 − (n − 1) 

365 
· Pn−1 

. . . 

= 
365 − n 

365 
· 365 − (n − 1) 

365 
· · · · · 365 − 1 

365 
· 365 
365 

= 
365! /(365 − (n + 1))! 

. 
365n+1 

We can easily write a MATLAB script to evaluate this formula (of course, we want 1 − Pn): 

function P =birthday prob(n) 
P = 1; · 
for i = 2 : n· 

P = P ∗ (365 − i)/365; · · 
end· 
P = 1 − P· 

We can also give an approximate solution by just sampling (and not doing any math). This 
is a much slower algorithm, but it works: 

function P =birthday prob(n) 
P = 0; · 
samples = 1000; · 
for i = 1 : samples · 

counts = zeros(365, 1); · · 
collision = 0; · · 
for j = 1 : n· · 

bday = randint(1, 1, 365)+1; · · · 
if counts(bday) > 0· · · 

collision = 1; · · · · 
break · · · · 

end· · · 
counts(bday) = 1; · · · 

end· · 
P = P + collision; · · 

end· 
P = P/samples;· 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




2

� 

� 

With either script, we can quickly find the smallest group that has a 50% chance of having a 
common birthday: 

� i = 2; 
� while birthday prob(i) < 0.5


i = i + 1;
· 
� end 
� i 
i = 

22 
� birthday prob(22)

ans =


0.5059 
[Yes, we have assumed for simplicity that no-one is born on a leap year and that, by extension, 
all people are spherical. The case of non-spherical people born in the real world is left as an 
exercise for the reader.] 

2. In order to solve these problems, we will consider the cumulative distribution function (cdf) 
of the Xi and of their maximum and minimum. 

FXi (x) probability that X < x 

0 if x < 0 
⎧ ⎪⎨ 

=


x if 0 ≤ x ≤ 1 
x > 1 

=
 ⎪⎩ 1 if


Fmax{Xi}(x) = probability that max{Xi} < x 

= probability that Xi < x for all i 
n� 

= FXi (x) [because the Xi are independent] 
i=1⎧ ⎪⎨ 0 if x < 0 

xn if 0 ≤ x ≤ 1 
x > 1 

=
 ⎪⎩ 1 if


n� 

1 − Fmin{Xi}(x) =	 probability that min{Xi} ≥ x 

probability that Xi ≥ x for all i=


⎧ ⎪⎨ 

= (1 − FXi (x)) 
i=1 

1 if x < 0

(1 − x)n if 0 ≤ x ≤ 1 
0 x > 1 

=
 ⎪⎩ if


By taking a derivative, we can recover the density functions of all the variables:


fmax{Xi}(x) = 
nxn−1 if 0 ≤ x ≤ 1 
0 otherwise 

fmin{Xi}(x) =	
n(1 − x)n−1 if 0 ≤ x ≤ 1 
0 otherwise 

We can finally compute the expectations! The mathematically agile will note that there are 
many clever ways of evaluating this last integral, but we choose to remind you of the generally 
applicable methods over demonstrating cute mathematics. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




3

� 

� � 

� � � 

� 

� 

� � � �� � � � 

� 1 
E[max{Xi}] = xfmax{Xi} dx


0
� 1
 n 
= nx n dx = . 

n + 1 0 � 1 
E[min{Xi}] = xfmin{Xi} dx


0
� 1

= nx(1 − x)n−1 dx 

0 � � �1 

= −x(1 − x)n + (1 − x)n dx (by parts) 
x=0 � �1

(1 − x)n+1 1 
= −x(1 − x)n − 

n + 1 
= . 

n + 1 
x=0 

3. We present two ways of solving this problem: the right way and the better way. 

We’ll start with the better way (the way we want you to do it). Define indicator variables: 

0 if player i is sick 
Ii = 

1 otherwise. 

Then, E[Ii] = P [Ii = 1] = 7/8, and: 

30 
4 189 

E[IiIj ] = P [Ii = 1 and Ij = 1] = � � = , for i = j. 
32 248

�
4 

Without loss of generality, assume that the players are seeded so that player 2i − 1 is to play 
with player 2i for i = 1 . . . 16. Then, the expected number of remaining pairs is: 

16

E[number of healthy pairs] = E I2i−1I2i

i=1


16


= E[I2i−1I2i] by linearity of expecation 
i=1 

189 378 
= 16 = ≈ 12.2.· 

248 31 

Now for the right (and boring) way: 

n

E[number of healthy pairs] = iP [number of healthy pairs = i] 
i=1 

= 12 × P [number of healthy pairs = 12] 

+ 13 × P [number of healthy pairs = 13] 

+ 14 × P [number of healthy pairs = 14] 
16 24 16 15 22 16 
4 1 2 2 378 · 

= 12 × � � + 13 × � � + 14 × � � = . 
32 32 32 31 
4 4 4 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




4

� �	 �� 

�	 � 

�	 � 

�	 � 

�	 � 

4.	 (a) You should switch! This is equivalent to changing your choice to both of the doors that 
you did not choose. This is very counterintuitive, since it seems that switching to a single 
new door is the same as choosing that door to begin with, but the door that Monty opens 
depends on the door that you initially chose (since if we chose one of the goats to begin 
with, we have forced Monty to open the door to the other goat, and the last door must 
conceal the Corvette). Thus, you should definitely switch! 

(b) 
� switchscore = 0; 
� stayscore = 0; 
� for i = 1 : 1000


doors = [1, 2, 3];
· 
corvette = randsample(doors, 1); · 
myguess = randsample(doors, 1); · 
doors = find(doors ∼= corvette); · 
doors = find(doors ∼= myguess); · 
montyopens = randsample(doors, 1); · 
if myguess == corvette · 

stayscore = stayscore + 1; · · 
else· 

switchscore = switchscore + 1; · · 
end· 

� end 
� [stayscore, switchscore] 
ans =


335 665

(c) Our previous reasoning still holds; it doesn’t matter which door you switch to; by sym

metry, they both have the same probability of hiding Corvettes. 

5. (a) 

P (x1, x2) = 
2

1 
π 

exp − 
(x1 − 

2

10)2 

− (x1 − 10)(x2 − 5) + (x2 − 5)2 

(b) 

cov (Ax, Bx) = E (Ax − E [Ax]) (Bx − E [Bx])T 

T = E A (x − E [x]) (B (x − E [x]))

= E A (x − E [x]) (x − E [x])T BT 

= AE	 (x − E [x]) (x − E [x])T BT 

= A cov (x) BT .· · 

6. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].




5

� v1 = [0, 0, 0, 0, 0, 1]�;

� v2 = [1, 2, 3, 4, 5, 6]�;

� v3 = [1, 4, 9, 16, 25, 36]�;

� v4 = [1, 0, 0, 0, 0, 0]�;

� u1 = v1; 
� u1 = u1/norm(u1);

� u2 = v2 − (v2� ∗ u1) ∗ u1;

� u2 = u2/norm(u2);

� u3 = v3 − (v3� ∗ u1) ∗ u1 − (v3� ∗ u2) ∗ u2;

� u3 = u3/norm(u3);

� u4 = v4 − (v4� ∗ u1) ∗ u1 − (v4� ∗ u2) ∗ u2 − (v4� ∗ u3) ∗ u3;

� u4 = u4/norm(u4); 
� [u1, u2, u3, u4]

ans =


0 0.1348 −0.4040 0.9048

0 0.2697 −0.5465 −0.2842

0 0.4045 −0.4277 −0.2513

0 0.5394 −0.0475 −0.1016

0 0.6742 0.5941 0.1648


1.0000 0 0 0 

If we start with vectors in a different order, we will get a different basis; for example, the first 
vector of the new basis will always be a unit vector in the direction of the first vector provided 
to us. 

Cite as: Tommi Jaakkola, course materials for 6.867 Machine Learning, Fall 2006. MIT OpenCourseWare
(http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].



