6.856 — Randomized Algorithms

David Karger

Handout #17, October 30, 2002 — Homework 9, Due 11/6

- 1. Suppose you have an estimation algorithm that will find a $(1 \pm \epsilon)$ approximation to the correct value with probability 3/4. Show that you can reduce the failure probability exponentially fast from 1/4 to any desired δ by performing some number k of estimation experiments and taking the median value returned. Give the smallest upper bound you can on k as a function of δ .
- 2. Suppose you are able to sample from a probability distribution whose standard deviation is less than its mean. Give an (ϵ, δ) -approximation scheme for estimating the mean of this distribution with a number of samples polynomial in $1/\epsilon$ and $\log 1/\delta$. **Hint:** Consider the sum of *n* independent samples from the distribution and determine its mean and variance. Bound the probability that this sum deviates greatly from its mean. Now use the previous problem.
- 3. Suppose you are given a directed graph with n vertices and m unit-length edges. Consider the problem of estimating the number of vertices within distance d of each vertex. Give a fully polynomial (ϵ, δ) approximation scheme that solves this problem simultaneously for all vertices for any fixed d. Your running time should be $\tilde{O}((m + n)/\epsilon^2 \log 1/\delta)$.
- 4. Write a half-page or greater description of the project you plan to do. Include citation of relevant work. Typeset the writeup, and submit it on a separate sheet with your name. A group may submit a single writeup.