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6.856 — Randomized Algorithms


David Karger 

Handout #9, October 2, 2002 — Homework 5, Due 10/9 

1. MR Section 3.3.	 Evaluate the behavior of the randomized selection algorithm using 
Chebyshev’s inequality. Use this to design a slightly changed version of the algorithm 
that uses O(log n) random bits and fails (takes superlinear time) with probability 
O(1/n). 

2. MR 5.12.	 Show how the method of conditional expectations can be used to build a 
2-dimensional binary space partition of size O(n log n). 

3. MR 5.11. In this problem, we will finish establishing the properties of the pessimistic 
estimator P̂ (a) used in the set balancing derandomization by conditional probabilities. 

(a) Show that for a node a at the i-th level of the computation tree, P̂ (a) is of the 
form N (a)/2n−i, where N (a) is a sum of binomial coefficients times powers of two. 

(b) Prove that for any node a, we can compute P̂ (a) in polynomial time 

(c) Prove that min{P̂ (b), ˆ P (a) if a has children b and c.P (c)} ≤ ˆ

(d) Give an upper bound on the running time of the deterministic algorithm for either 
the unit cost or the log-cost RAM. 

4. A collection of m sets Sj ⊆ U is given. Our goal is to find a small set Z that intersects 
every Sj . Unfortunately this problem is N P -complete. Consider the following integer 
linear program: 

min zi 

i∈U 

1zi ≥ 
i∈Sj 

zi ∈ {0, 1} 

The intent is that Z = {i zi = 1}. Let w denote the optimum ILP value. |

(a) Argue that this integer linear program determines the optimum set. 

(b) Show that in polynomial time, you can find a set of size at most w that intersects 
a constant fraction of the sets Si. Hint: use randomized rounding. 
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(c) Show that in polynomial time, you can find a set of size at most O(log m) times 
optimum that intersects every Sj . 

5.	 (optional) MR 5.14. An (n, m) safe-set instance consists of a universe U of size n, a 
safe set S ⊆ U , and m target sets T1, . . . , Tm ⊆ U . such that: 

= �T1� = = �Tm�,• �S� · · ·

= ∅ for every i = 1, . . . , m
• S ∩ Ti 

An isolator for a safe set instance is a set I ⊆ U that intersects all the target sets but 
not the safe set. An (n, m) universal isolating family is a collection of subsets of U 
that contains an isolator for every (n, m) safe set instance. 

Show that there exists an (n, m) universal isolating family that contains a number of 
sets polynomial in n and m. 

The application of an isolator is to certain optimization problems involving sets, where 
you need to eliminate certain “distractions” Ti (by erasing some of their elements) 
without hurting the “safe” optimal set that you want to find. If you have an isolator 
for your given input, you can solve the problem easily. 

To use a universal isolating family, we simply try each set in it as a candidate isolator 
for our input, and know that one of them will work. If the family is of polynomial size, 
it only takes polynomial time to try all the possibilities, which leads to polynomial 
time deterministic algorithms. 

This problem only shows existence. Using some more complicated techniques, one can 
deterministically construct the isolating family. A step towards this (the case m = 1) 
is the next problem. 

6. (optional) MR 3.9. A universe U contains a (unknown) subset of n good elements T 
and n bad elements S. Our goal is to choose a subset of U containing at least one good 
elements and no bad ones. 

(a) Let	 S and T be two disjoint size-n subsets of a universe U . Suppose we select 
a random subset R ⊆ U by independently including each element of U with 
probability p. We say the sample is good if it contains an element of T but no 
element of S. Prove that when p = 1/n, the probability our sample is good is 
larger than some positive constant independent of n. 

(b) Suppose now that we sample the elements only pairwise independently.	 Prove 
that for a suitable choice of p, we still get a positive chance of success. Hint: Use 
inclusion exclusion, which says that 

Pr[Ai] Pr[Ai ∩ Aj ] ≤ Pr[∪Ai] ≤ Pr[Ai]− 
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