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1 Proof of Farkas' Lemma 

Theorem 1 [Farkas' Lemma] Either 

1.  Ax = b, z > 0 has a solution, or 

2. ATy 2 0 and yTb < 0 has a solution, 

but not both. 

The reason that 1 and 2 cannot both occur is that (yTA)x = yTb, so if yTA is non-negative and x 

is non-negative, then yTb can't be negative. 


To prove Farkas' Lemma we need the Projection Theorem: 


Theorem 2 Let K be a closed, convex and non-empty set in Rn, and b E Rn, b 4 K .  Define 
projection p of b onto K to be x E K such that lib - xll is minimized. Then for all z E K : 

(b  -~ ) ~ ( z-P) < 0-

Proof of Farkas' Lemma: Assume Ax = b,x 2 0 is not feasible. Let K = {Ax : x 2 0). 
Therefore, b K. Let p = Aw, w 2 0 be the projection of b onto K. Then we know that 

(b - A W ) ~ ( A X  - Aw) < 0 for all x 2 0 

Define y =p - b = Aw - b. Therefore, 

(x -w ) ~ A ~ ~2 O for all x 2 O 

Let ei be the n x 1vector that has 1 in its i'th component and 0 everywhere else. Take x = w + ei. 
Therefore, x -w = ei, and by (2), 

e ' 2~0 ~ ~ 2 0 for all i( A ~ ~ ) ~  

Thus since each element of ATy is non-negative, ATy 2 0. 
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Now, yTb = yT(p -y) = yTp -yTy. jFrom (1)if x = 0, 

and 

yTp - YTY I-YTY < 0 

The last inequality comes from the fact that y = b -p, b $ K, so b -p # 0 + yTy > 0 

Theorem 3 [Another variant of Farkas' Lemma] Either 

1.  	Ax 5 b has a solution, or 

2. 	ATy = 0, bTy < 0, y 2 0 has a solution, 

but not both (for then we would have 0 = yTAx 5 yTb < 0.) 

Duality 

Consider an LP P in the standard form (we call this LP the primal). We can write a "dual" LP D 
as follows: 

Primal P: x* = min cTx Dual D: W* = max bTy 
subj to  subj to 

Ax = b ATY5 c 
2 2 0  

Weak duality states the following. 

Theorem 4 [Weak Duality] Let x be feasible in P, and let y be feasible in D. Then 

Proof of Theorem 4: 

since x and c -ATy both have nonnegative coordinates. 

The following three cases are possible for an LP: 

Primal Dual 

1)infeasible (x* = +oo) 1')infeasible (w* = -oo) 

2) unbounded (x* = -m) 2') unbounded (w* = +oo) 

3) finite (x* = finite real number) 3') finite (w* = finite real number) 




Then 2 j 1' because if the dual were feasible, any value bTy for the dual would be a lower bound 
for the primal, which could therefore not be unbounded. Similarly 2' j 1. Note that we can have 
1and 1' occurring simultaneously. 

Theorem 5 [Strong duality] If P or D is feasible then x* = w*. 

Proof of Theorem 2: It suffices to treat the case when the primal is feasible, because the primal 
and dual are interchangeable. So assume P is feasible. If P is unbounded then weak duality implies 
that D is infeasible, and then x* = w* = -w. So from now on assume that the primal is finite. 

Claim 6 There exists a solution of dual of value at least x*, i.e., 

3 y : ~ ~ ~ < c , b ~ ~ > x *  

Proof of Claim 3: We wish to prove that there is a y satisfying 

Assume the claim is wrong. Then the variant of Farkas' Lemma implies that the LP 

has a solution. That is, there exist nonnegative x, X with 

Case 1: X > 0. ThenA(:) = b, e T ( i )  < z*. Thiscontradictstheminimalityof~*fortheprimal, 
hence this case cannot occur. 

Case 2: X = 0. Then Ax = 0, cTx < 0. Take any feasible solution 2 for P. Then for every p 2 0, 
2 +px is feasible for P, since 

But cT(2 + +x) = cT2 + +cTx + -w as p -+W. This contradicts the assumption that the 
primal has finite solution. 

The above claim shows that if P or D is finite then the other is too, and the optimums are equal 
(x* > w* is weak duality and the claim shows w* > x*.) This concludes the proof of the strong 
duality theorem. 



3 Complementary Slackness 

Consider the following primal LP. 

min cTx 
Az = b 

z 2 0 

We write the dual as follows: 

max bTy 
~ ~ y + s= c 

s 0, y E R m , s E R n  

Theorem 7 Let  x be feasible for the  primal, and y be feasible for the  dual. T h e n  x i s  optimal for 
P and y i s  optimal for D if and only  if xjs j  = 0 for all j .  

Proof: We have 

When both x and y are optimal, the above difference must be zero, and conversely, if the difference 
is zero, both must be optimal by weak duality. But since x, s are nonnegative, xTs is zero if and 
only if x jsj = 0 for all j . . 
So, to prove that a solution to an LP is optimal, all we need to do is to give an x and a (y,s) and 
show that both are feasible and the complementary slackness condition is satisfied. 

4 Size of a linear program 

Let's think about how we encode the LP. We can use binary encoding to give the entries of A, b, c, 
that defines the LP in standard form. For an integer k, it takes size(k) = 1+ rlog,(lkl+ 1)1 bits to 
encode Ic.  So, 

size(LP) = xsize(aij) +xsize(cj) + xsize(bi) 
i, j  j i 

A polynomial-time algorithm for linear programming is an algorithm whose worst-case running time 
is bounded by a polynomial in the size of the input LP. 


