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1 Vertices of polyhedral sets 

Last time, we defined the vertex of a linear program, and we proved one direction of the theorem 
below (see notes on Linear Programming). Now we prove the other direction. 

Theorem 1 Let x E P,  where P = {x : Ax = b,z > 0). Define Ax as the submatrix of A of 
columns j for which x j  > 0. Then x is a vertex of P if and only if Ax has linearly independent 
columns. 

Proof of Theorem 1: Last time we proved that if the columns of Ax are linearly dependent, 
then x is not a vertex. Now, we show that if x is not a vertex, then the columns of Ax are linearly 
dependent. Assume that x is not a vertex. Then by the definition of a vertex, 3y # 0 such that 
x + y , x - y  E P. This means that Ax+Ay = b a n d  Ax-Ay = b, so Ay = 0 ,  and a l sox-y  > 0 
and x +y > 0, therefore yj = 0, for every j such that x j  = 0. Thus, since y # 0, A,, the submatrix 
containing columns j of A such that gj > 0, has dependent columns. Since every column in A, is a 
column in Ax, therefore Ax has linearly dependent columns. 

2 Bases and basic feasible solutions 

Let P = {x : Ax = b, x > 0}, where A is an m x n matrix. We define a basis, a basic solution, and 
a basic feasible solution for P as follows: 

Definition 1 A subset B of {1,2,. ..,n} of size m is called a basis if AB, the matrix consisting of 
columns of A that correspond to the indices i n  B, is invertible. 

Definition 2 A vector x is called a basic solution to Ax = b if and only if there is a basis B such 
that 

a ABxB = b, or equivalently, XB = A B ' ~ .  

Definition 3 x is a basic feasible solution if i n  addition to the conditions above, we have A B ' ~2 0. 

Without loss of generality, we can assume Rank(A) = m (A has full row rank). The following 
lemma shows a correspondence between vertices and basic feasible solutions of P. 

Theorem 2 Let A be an m x n matrix with full row rank. Then for every x, x is a basic feasible 
solution if and only if x is a vertex. 

Proof: By the definition above, we can see that if x is a basic feasible solution, then x is a vertex. 
Also, if x is a vertex, we show that it is a basic feasible solution. To show this, let S = {j: x j  > 0) 
and consider three cases: 

IS1 > m. This case cannot happen since by Theorem 1 columns of As must be linearly 
independent, but there cannot be more than m linearly independent columns. 



IS1 = rn. In this case, we are done since x is a vertex and IS1 = m, so x is a basic feasible 
solution corresponding to the basis S. 

IS1 < rn. By Theorem 1, the columns of As is a linearly independent subset of the set of 
columns of A. By basic linear algebra, since the rank of A is rn, we can augment S to find a 
set AB of rn linearly independent columns of A. Now, B is a basis and x is a basic feasible 
solution corresponding to B. 

Remark 1 Note that the above correspondence between vertices of P and basic feasible solutions is 
not one-one, i-e., there can be many bases corresponding to the same vertex. When  several bases 
correspond to the same vertex, we say we have degeneracy. 

Remark 2 B y  the above theorem, the number of vertices of P cannot exceed the number of bases, 
which is at most ( z ) .I n  fact, i t  is proved (the proof is not easy) that the number of vertices is at 
most 

n - L(m + l ) /2j)  + (n - L(m +21/21)( n- rn  n - m  

This bound is tight. 

Theorem 3 If rnin{cTx : Ax = b,x 2 0) is finite (not unbounded), then for every x E P ,  there 
exists a vertex x' E P, such that cTx' 5 cTx. 

Proof of Theorem 2: If x is a vertex, then we are done. Suppose x is not a vertex, then 3y # 0, 
such that x +y,x -y E P .  Thus, Ay = 0, and yj = 0 for every j such that x j  = 0. Assume cTy 5 0 
(the case cTy 2 0 is similar). Then, for every X > 0, A(x + Xy) = b and cT (x + Xy) 5 cTx. Also, 
since yj = 0 for every j such that x j  = 0, if we take X = rninj:yj<o+ > 0, we will have x +Xy 2 0,

Yj 

and furthermore, the number of nonzero entries of x + Xy is at  least one less than the number of 
nonzero entries of x. Thus, if we take x' = x + Xy, then x' E P, cTx' 5 cTx, and the number of 
nonzero entries of x' is at least one less than that of x. Now, if x' is a vertex, we are done; otherwise, 
we repeat the same process on x'. Since this process decreases the number nonzero entries of x, we 
will eventually stop, i.e., we will find a x' that is a vertex. 

Corollary 4 If P = {x :Ax = b, x 2 0) # 8,  then there exists a vertex of P .  

3 The simplex method 
Theorem 3 shows that for every bounded linear program, there is a vertex of the polyhedron that 
minimizes the objective function. This is the main idea behind the simplex algorithm. The simplex 
algorithm was proposed by Dantzig in 1947. It focuses on vertices to solve linear programming 
problems. 

Sketch of the algorithm: 

1. We start with a basis B. 

2. At every step, if we can't prove that B is optimum, we replace a varible in B with a variable 
outside B,  to obtain another basis. This process is called pivoting, and it is done according to 
a pivot rule. 



Simplex algorithm is known to work very well in practice. However, almost for every known pivot 
rule, we know that the worst case running time of the simplex algorithm is exponential (i.e., there 
is an example on which the simplex algorithm takes an exponential number of steps to find the 
optimum). We do not know whether there is a polynomial time simplex algorithm. 

The complexity of the Simplex algorithm is "related" to the Hirsch conjecture, which says the 
diameter of the skeleton of a polyhedron in Rd with n facets is at most n - d. 

4 Duality in Linear Programming 

We know from basic linear algebra that if a system of linear equations is not feasible, then it is 
possible to get a contradiction by multiplying each equation by a coefficient and adding them up. 
In other words, 

Theorem 5 Either Ax = b has a solution, or ATy = 0, bTy f 0 has a solution, but not  both. 

The following theorem, known as Farkas' Lemma proves something similar for linear inequalities. 

Theorem 6 (Farkas' Lemma) Either Ax = b, x 2 0 has a solution, or ATy 2 0, yTb < 0 has a 
solution, but not  both. 

It is obvious that both cases in the Farkas Lemma cannot occur at the same time, so we just 
have to prove that if Ax = b, x 2 0 does not have a solution, then there is a y such that ATy 2 0 
and yTb < 0. This fact is usually proved using the simplex algorithm. However, here we present a 
different proof using the following lemma. 

Theorem 7 (Projection Theorem) Let K be a nonempty, closed convex set in Rn ,  and b 4 K.  The 
projection p of b onto K is a point p E K that minimizes the distance 1 1  b -pll . Then for every x E K ,  
( b - ~ ) ~ ( x-P) 5 0. 

Proof: If this is not true, by moving from p a little bit toward x, we obtain another point in K 
that is closer to b. This is a contradiction with the definition of p. 


