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18.415/6.854 Advanced Algorithms October 24, 2001 

Lecture 12 
Lecturer: Michel X .  Goemans Scribe: David Woodruff and Xzaowen X in  

In this lecture we continue the presentation of the Cancel and Tighten Algorithm for solving the mini- 
mum cost circulation problem. In our initial analysis, we will determine the algorithm's running time 
to be O(min(nn2 log(&), m2n log(2n))). The latter half of today's lecture will be devoted to splay 
trees, a data structure which will help reduce this running time to O(min(nn log(nC) log n, m2n log2 n)).  

1 Cancel and Tighten 

1.1 The Algorithm 

Definition 1 The admissible edges of a residual network Gp are defined to  be the set of edges 
{(v, w) E Ef :cp(v, W) < 0). A n  admissible cycle of the residual graph Gf is a cycle consisting solely 
of admissible edges. The admissible graph is the subgraph of G consisting solely of the admissible 
edges of E f  . 

Cancel and Tighten Algorithm: 

1. Initialize f ,p, E. 

2. While f is not optimum, i.e., G contains a negative cost cycle, do: 

(a) Cancel: While Gp contains an admissible cycle r ,  push as much flow as possible along r .  

(b) Tighten: Find p', E', such that f is E'-optimum with respect to p' and E' 5 (1- l l n ) ~ .  

At any point in the algorithm we will have a circulation f ,  a potential function p, and an E such 
that f is E-optimum with respect to p. Recall that f is said to be E-optimum with respect to p if 
V(v, W) E Ef,cp(v, W) 2 -E. TO initialize the algorithm, we will assume that f = 0 satisfies the 
capacity constraints (i-e., f = 0 is a circulation). If this is not the case, then a circulation can be 
obtained by solving one maximum flow problem or by modifying the instance so that a circulation 
can easily be found. Our initial potential function p will be the zero function. Setting 

E = max Ic(v, w)l, 
(v ,w)  E E  

we surely have that f is E-optimal, i.e., that 

The existence of p', E', in the tighten step follows from a lemma shown last time or from Theorem 
10 in the notes. 

1.2 Analysis 

Each time we complete a tighten step, we reduce e by a factor of 1- l l n .  Starting with 

E = C =  max Ic(v,w)I, 
( v , w ) € E  



a simple argument given last time shows that c will be less than l / n  after O(nlog(nC)) tighten 
steps, which will then imply that f is optimal. Alternatively, after n log(2n) iterations of tighten, 
one additional edge is €-fixed, and that edge remains fixed because ~ ( f )  does not increase as the 
algorithm progresses. Using this alternative analysis, we obtain the strongly polynomial bound of 
O(mnlog(2n)) iterations of the tighten step. To determine the overall running time of the Cancel 
and Tighten Algorithm we need to determine the time spent for each cancel step and for each tighten 
step. 

Implementing the Tighten Step: To implement the tighten step, we could use an extended 
Bellman-Ford algorithm to find the minimum mean cost cycle in O(mn) time. This would be 
sufficient for our purposes, but is not necessary. We need only find a p', el, such that f is E'-

optimum with respect to p1 and E' < (1- l/n)e. After the cancel step completes, we know there are 
no cycles in the admissible graph. Therefore we can take a topological ordering of the admissible 
graph to rank the vertices so that for every edge (u, w) in the admissible graph, rank(u) < rank(w). 
This ranking of the vertices can be done in O(m) time using a standard topological sort algorithm. 
Letting l(u) : V + {0,1,2,...,n - 1) denote the rank function on the vertices V of Gf,we have 
1(w) > 1( v ) if (u, w) is an admissible edge of Ef. For each vertex v of V, we define our new potential 
function p' by p' (u) =p(u) - 1 (u) cln. 

Claim 1 p' is such that f is 8-optimal with respect to p', where E' < (1- l l n ) ~ .  

Proof of claim 1: Suppose (u, w) E Ef.Then, 

Casel: (v, w) was admissible: 

cb(v, w) = cp(u, w) + c/n(l (w) - l(v)) 

> -e+c/n  

> - ( I - l /n)c 

Case2: (v, w) was not admissible: 

cb(v, w) = cp(u, w) + c/n(l (w) -1(u)) 
> 0 - c/n(n- 1) 
= -(1 - l /n)c 

Hence, in either case, f is €'-optimal with respect to p', where E' < (1- l/n)c. 

Implementing the Cancel Step: We now shift our focus to the implementation of the cancel 
step. The goal in the cancel step is to saturate at least one edge in every cycle in the admissible graph 
G = (V,A).  We will implement this with a Depth-First-Search (DFS), pushing flow to saturate and 
remove edges every time we encounter a cycle, and removing edges whenever we determine that they 
cannot be part of any cycle. The algorithm is: 



Cancel S tep  algorithm(G = (V, A)) : 

1. Choose v in V. Begin a DFS rooted at  v. 

(a) If we encounter a vertex w that we have previously encountered on our path from 	v ,  
we have found a cycle r. In this case, we let S = min(,,w),r u(v, w). We then increase 
the flow along each of the edges of by S, saturating at least one edge. We remove the 
saturated edges from A, and recurse with G1= (V, A'), where A' denotes the edges of A 
with the saturated edges removed. 

(b) If we encounter a vertex w such that there are no edges emanating from w in G, we 
backtrack until we find an ancestor r of w for which there is another child to explore. As 
we backtrack, we remove the edges we backtrack along from A until we encounter r .  We 
continue the DFS by exploring paths emanating at r. 

Every edge e f A that is not part of any cycle is visited at most two times, and hence the running 
time to remove edges that are not part of any cycle is O(m). For each cycle that we cancel, we need 
to determine 

u = min u(v,w) 
('u,'w)E r  

and update the flow along each of the edges of the cycle. Since there can be at most n - 1edges 
in a cycle, we spend O(n) time per cycle cancelled. Since we saturate and remove at  least one edge 
from A every time we cancel a cycle, we can cancel at most m cycles. Hence, the overall running 
time of the cancel step is 0(m +nm) = 0(mn). 

Overall Running Time: Note that the cancel step requires O(mn) time per iteration, whereas 
the tighten step only requires O(m) time. Hence, the cancel step is the bottleneck of the Can- 
cel and Tighten Algorithm. Earlier we determined that the number of iterations of the Can- 
cel and Tighten Algorithm is O(min(n log(nC), mn log(2n))). Hence the overall running time is 
O(min(mn2 log(nC) ,m2n2 log(2n))). 

In the following sections we will create data structures which will reduce the running time of a single 
cancel step from O(mn) to O(m1ogn). We will make use of dynamic trees which will enable us 
to spend an amortized cost of O(1ogn) per cycle cancelled. The overall running time will then be 
0(min(mn log(nC) log n,  m2n log2 n)). 

2 Binary Search Trees 

A Binary Search Tree (BST) is a data structure that stores a dictionary. A dictionary is a collection 
of objects with ordered (and we'll assume unique) keys. 

2.1 Structure of a BST 

A BST stores objects as nodes in a binary tree such that key[x] 5 key[y] if and only if x is to the 
left of y (see Figure 1). 

2.2 Operations on a BST 

Here are some operations that a typical BST supports: 



Figure 1: A BST where x is to the left of y. 

1. find($): returns true if x is in the tree, otherwise returns false. This is implemented by 
traversing the tree: when you encounter an element y, branch left if key[y] > key[x], branch 
right if key[y] < key[x], and return true if key[y] = key[x]. If you cannot traverse any more, 
then return false. This runs in O(h) time, where h is the height of the BST. 

2. 	insert(x): inserts x into the tree. This is implemented by traversing the tree similar to find(x) 
above until you reach the end, and inserting x as a leaf node. This runs in O(h) time. 

3. 	delete(x): deletes x from the tree. This is implemented by first finding x. If x is a leaf node, 
delete it, otherwise swap x with its immediate successor. Since the immediate successor of x is 
guaranteed to be a leaf node, x becomes a leaf node, and we can delete it. This runs in O(h) 
time. 

4. 	min: find the minimum element in the entire tree. 

5. 	max: find the maximum element in the entire tree. 

6. 	successor(x): find the element y with the smallest key [y], where key [y] > key[XI. 
7. predecessor(x): find the element y with the greatest key[y], where key[y] < key[x]. 

8. spZit(x): returns two dictionaries such that one of them contains elements y: key[y] > key[XI 
and the other one contains elements x: key[x] < key[$]. 

9. join(Tl, x, T2): given TI which contains elements 2: key[z] < key[x] and T2 which contains 
elements y: key[y] > key [XI, return a BST that contains TI, x, and T2. 

In the worse case, the height of the tree could be equal to the number of elements in the tree, so the 
running time of these operations is linear in the number of elements. A "balanced" BST is a BST 
such that the height is maintained at O(1og n), where n is the number of nodes in the tree. With 
such a tree, above operations would run in O(1og n). A balanced BST can be implemented using a 
Red-Black tree, AVL, or B-tree. 

2.3 Rotations 

In order to mutate the layout of a BST we can rotate parts of the tree to raise or lower nodes. Figure 
2 shows a right rotation operation, known as a zig. A left rotation, called a zag, is the mirror image 
of this. In the following, we will see how we can use these operations to lower the amortized cost of 
the operations on a BST. 



(Right Rotation) a 

Figure 2: Zig (right rotation) operation. 

Figure 3: case 1. 

3 Splay Tree 

A Splay Tree is a BST which performs a splay operation every time an access is made. We will prove 
that the amortixed cost of one operations on a splay tree is O(1ogn). We will see that this implies 
that for every k, the total running time of any sequence of k operations on the tree is O((k+n) log n). 

3.1 Splay Step 

splay-step(x) attempts to move x two levels higher if it's not already the root. 

case 1:parent(x) = root (Figure 3): If x is the left child of its parent, then do a zig, otherwise, 
do a zag to make x the root. 

case 2: both x and parent(x) are left children or they are both right children of their parents. 
Let y =parent(x) and x =parent(y). 

- If x and y are left children, then do a xig(x) followed by a xig(y). (See Figure 4). 

- If x and y are right children, then do a xag(x) followed by a zag(y). 

case 3: x is a right child while parent(x) is a left child or vice versa. Again, let y =parent(x) 
and x =parent(y). 

- If x is a right child and y is a left child, then do a xag(y) followed by a xig(x). (See Figure 

5). 
- If x is a left child and y is a right child, then do a xig(y) followed by a xig(x). 



Figure 4: case 2. 

Figure 5: case 3. 

3.2 Splay 

The operation splay(x) moves x to the root by repeatedly calling splay-step(x). The Splay Tree 
data structure is defined by the following rule: When you access a Splay Tree, always call splay(x) 
where x is the last element you access. For instance, when calling f ind(x), if you find x in the Splay 
Tree, you should then call splay(x). If you don't find x, but instead find the leaf y, you should call 
splay (y). For deletions, splay is called on the parent of the element x being deleted, if the element 
x is in fact found in the Splay Tree. 

3.3 Amortized Analysis of Splay Tree 

Assume splaystep takes 1unit of time. Suppose for every node x of the tree we have assigned a 
weight w(x) > 0 (These weight are assigned only for the sake of analysis of the running time of the 
algorithm and do not appear in the actual implementation of the algorithm). We define: 

S(x) = C w(Y), 
yEtree rooted at x 

= llog, (S(X) )I. 

We call r(x) the credit of the vertex s. We define our credit invariant as the sum of r(z) for all nodes 
x in the tree. Now, we can define the amortized cost of an operation as follows: If the operation has 
cost (i.e., running time) Ic ,  the amortized cost of the operation is k +C, rl(x) - r(x). We prove the 
following two lemmas in the next lecture. 



Lemma 2 The amortized cost of one splay-step(z)  is at most 3(r'(x) - r (z ) )+ c, where c is 1 if x 
is a parent of the root, and 0 otherwise. 

Lemma 3 The amortixed cost of splaying a tree of root v at node x is at most 3(r(v) - r(x)) + 1. 

Notice that if we take w(z) = 1 for every vertex x of the tree, then Lemma 3 implies that the 
amortized cost of splaying a tree at  any node is at most 3logn (this is because the credit of any 
node is at most log(n)), even though the actual cost may be n. Intuitively, this means that the extra 
cost is paid by the credits in the tree. 


