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18.41516.854 Advanced Algorithms November 19, 1992 

Lecture 19 

Lecturer: Michel X. Goemans Scribe: David B. Wilson1 

Lattices 

Starting with today's lecture, we will look at problems involving lattices and algo- 
rithms for basis reduction of lattices. Applications of this topic include factoring 
polynomials, breaking cryptosyst ems, rounding an interior point to an optimal vertex 
in linear programming, and solving integer programs. We start with definitions: 

Definition 1 Given a set of vectors 61,. . . ,b, E on,we define the lattice L = 
L(bl,. . . ,b,) = {CzlXibi : Xi E Z). Thus, L is the set of integral combinations of 
the vectors b;. 

Example: bl = (1,2),b2 = (2,1),n = rn = 2. 

Figure 1: The lattice L(bl, bz) = L(b2,b3) 

The simplest lattice is defined by unit vectors; L(el,. . . ,en) = Zn. 

Definition 2 A set of vectors (bl,. . . ,6,) is a basis for L if bl, .. . ,b, are linearly 
independent (with respect to Z) and L = L(bl,. . . ,6,). 

Every lattice has a basis, and its dimension is fixed. A given lattice can have many 
bases. In the above example for instance, Figure 1 shows that L(bl, b2) = L(bz, b3). 
This follows from the fact that b3 E L(bl ,b2) and bl E L(b2, 63). The basic operation 
to obtain another basis for a lattice is to subtract from one of the vectors an integral 
combination of the others. This idea is presented in our first claim: 

Claim 1 L(bl,. . . ,b,) = L(bl,. . . ,brnBl, b, -x:yl acuibi) for ai E Z .  

l ~ h e s enotes are based on last year's class notes, prepared by Atul Shrivastava and by David 
Gupta. 



Proof: Let x E L(bl,. . . ,b,). Then, 

Since (Xi + wiXm) E Z,we have x E L(bl,. .. ,b,-l, b, xEln=;'- wibi). 

NOW let x E L(bl, . . . ,bmAl, b, - aibi). Then 
CKY=;' 

where Xi = (13,- aiP,) for i = 1 , .. . ,m - 1 and A, = 13,. 

Definition 3 L is a full lattice in Qn if it can be generated by n linearly independent 
vectors. 

Example: L((0, I ) ,  (0,3)) is not a full lattice in Q2. 
Theorem 2 below implies that any one-dimensional lattice has a basis with at most 

one vector. In the problem set we will show that any lattice in Qn has a basis with 
at most n vectors. 

A given lattice can be reduced to a full lattice in polynomial time by restricting 
our attention to the affine space spanned by the vectors defining the lattice. As a 
result, without loss of generality, we will look only at lattices that are full. 

Also, we will see (as an exercise in the last problem set) that, given a set of vectors 
bl, . . . ,b,, a basis for the lattice L(bl, . .. ,6,) can be computed in polynomial time. 
Therefore, without loss of generality, we shall always assume that we are given a full 
lattice and a basis of that lattice. 

Let us show how to compute a basis of L in polynomial time in the case n = 1. 
The general case can be solved in a recursive manner using the result for n = 1 (see 
the problem set). We are thus given m integers bl, ... ,b,, and we would like to find 
an integer a such that L(bl, . . . ,b,) = L(a). 

7 l -~orem2 Let 61,. . . ,b, E N. Then L(bl,. . . ,b,) = L(gcd(bl,. . . ,b,)). 

Proof: The case m = 1 is trivial. Consider the case m = 2. Assume w.1.o.g. that 
0 Ib l  5 62. We prove that L (bl ,b2) = L (gcd (bl ,b2)) by induct ion on 61. 

If bl = 0 then L(bl, b2) = L(b2)= L(gcd(bl, b2)). If b1 > 0, then 

L ( h ,  bz) = L(b2 - bl L b ~ lbl] ,bl ) by Theorem 1 above 

= L(gcd(b1,b2 - bl Lb2/bl] )) by the induction hypothesis 

= L(gcd(b1,b2)) by Euclid's algorithm 



The case rn > 2 is shown by induction on rn. Assume the theorem is true for rn. 
Then 

Note that the greatest common divisor of two integers can be calculated in poly-
nomial time by Euclid's algorithm, since every two steps reduce the bit size of the 
maximum by at least 1. By applying Euclid's algorithm repeatedly, we can calculate 
the GCD of several integers in polynomial time. 

Combinatorial Application 

Suppose we are given a graph G = (V,E),and we want to assign colors to the edges 
such that no vertex is covered by two edges of the same color, and the number of 
colors is minimized. The minimum number of colors is at least dm,,, the maximum 
degree of any node. Vizing showed that the minimum number of colors is at most 
dm,, +1. However, deciding whether the minimum number of colors is dmax or dmax+1 
is NP-hard, even for special subclasses of graphs. 

Consider the class of cubic graphs, the graphs for which every vertex has degree 
3. Deciding whether the mininum number of colors needed is dmax = 3 or 4 is NP-
hard. But if there is a three-coloring, then the edges of the same color make a perfect 
matching. So there is a three-coloring if and only if there is a partition of E into 
perfect matchings. 

We can identify the perfect matchings M with vectors b in 2ZIEl. If e E M then 
be = 1, otherwise be = 0. Let L be the lattice spanned by these vectors. If there 
is a three-coloring, then (1,1,.. . ,1) E L. The converse isn't necessarily true, but 
this does give us a way to show that a graph is not 3-colorable if we can show that 
(1,.. . ,1) is not in the lattice. 

Shortest Lattice Vector Problem (SLVP) 
Given n linearly independent vectors bl, . .. ,b, in Qn (remember that we can assume 
w.1.o.g. that we are given a basis of a full lattice), we want to find a nonzero vector 
a E L(bl, . . . ,b,) such that 1 1  a 1 1  = Jzis minimized. This problem is called the 
shortest lattice vector problem. Let A(L) = minaEL,.+-, llall. 



The shortest lattice vector problem 
SLVP� is believed to be NP�hard� If k k is 

replaced by k k�� then it is known to be NP�hard 
Van Emde Boas ������ However� 

if n is �xed� the SLVP problem is solvable in polynomial time� We will treat below 

the cases n 	 � or �� 

For n 	 �� the case is trivial since a is a shortest lattice vector in L
a�� 

Let us now treat the case n 	 �� We shall �nd a basis 
b�� b�� � Q� � Q� of 

L in polynomial time in which b� 

is a shortest non�zero lattice vector� We use the 

����algorithm due to Gauss 
������ 

If kb�k � kb�k then swap b�� b� 

Repeat Choose m � Zto minimize kb� 

� mb�k 

b� 

�	 b� 

� mb��
 

Until m 	 �
 

Return b�� b�
 

Claim 
 The ����algorithm terminates in polynomial time� 

The proof is analogous to the proof that Euclid�s algorithm terminates in polyno�
mial time 
see problem set�� As in Euclid�s algorithm� the number of iterations is 

logarithmic in the numbers� The reasons are similar� but more complicated� 

Theorem � The ����algorithm returns a shortest non�zero vector in L� 

Proof	 At termination� we have 

� kb�k � kb�k 

� kb�k � kb� 

� �b�k� for all � � Z� 

Since kb�k � kb� 

� �b�k for any integer �� the orthogonal projection of b� 

on b� 

is 

be  t  ween b��� and �b��� 
see Figure ��� On the other hand� kb�k � kb�k and so b� 

is 

outside the circle 
�� kb�k�� This implies that j cos �j � ��� and so ��� � � � ���� � 

In fact� because of the hexagonal lattice� this bound is tight� 

Let a 	 ��b� 

 ��b� 

be a shortest non�zero vector in L� Since � � ��� and 

�  �  � 	 ���� � we have � � � or � � � 
see Figure ��� Therefore we have 

kak � j��jkb�k or kak � j��jkb�k� since the length of the sides of a triangle are in the 

same order as the angles they face� Since the �i�s are integers and kb�k � kb�k� this 

implies that kb�k � kak� � 

Since ��� � � � ���� � b� 

and b� 

are almost orthogonal� One can prove that 
b�� b�� 

is a couple of independent vectors in L that 

�� maximizes sin � 

�� minimizes kb�k kb�k
 

In fact� we will see that these two statements are equivalent�
 

���� 



Figure 2: 60" 5 a 5 120". 

Figure 3: ,B 5 a or y 5 a .  

Minimum Basis Problem 
Given a basis (bl,. . . ,b,) of a full lattice L c Qn, consider the non-singular n x n 
matrix B = [bl . . .b,]. We know that 1 det(B)I is the volume of the parallelepiped 
defined by bl, . . . ,b,. 

Theorem 5 Given a full lattice L, I det(B)I is independent of B, for any basis B of 
L. 

Proof: Let B and Bt be two bases of L. For 1 5 i 5 n, we have b: = C7=,Xobj, 
where the Xij are integers. In other words, Bt = BP, where P is an integral n x n 
matrix. Therefore, 1 det B'I = I det Bll det PI. But 1 det B'I # 0 since B' is non-
singular. Hence I det PI # 0 and so I det PI 2 1 since P is integral. This implies that 
I det BtI 2 1 det BI. By symmetry, it follows that I det B'I = I det BI. 

Since 1 det (B)I does not depend on the choice of the basis for a given lattice L, 
let det(L) = Idet(B)I. When n = 2, we have ldet(B)I = llblll Ilb2llsina, and so 
minimizing 1 1  bl 1 1  1 1  b2 1 1  is equivalent to maximize sin a .  

From linear algebra, we know that it is easier to deal with bases which are orthog-
onal. However, in the case of lattices, this is not always possible. Nevertheless, we 
are interested in finding a basis that is "somewhat orthogonal". The case for n = 2 
treated above and Theorem 5 therefore motivates the following problem, called the 
minimum basis problem. 



Figure 4: The determinant of a basis is constant in absolute value. 

Given a lattice L, we want to find a basis (bl,. . . ,6,) that minimizes 
the product llblll . Ilbnll. 

This problem turns out to be NP-hard (Lovisz). However, there are a- approximation 
algorithms for this problem where a depends only on the dimension of the basis of the 
lattice. Fortunately, there is a general lower bound on the size of a minimum basis 
(which is attained by some lattices and is thus tight) and, in any given dimension, 
all lattices have a basis whose size is at most a constant multiple of the general lower 
bound. This will allow us to develop an approximation algorithm. 

Claim 6 (Hadamard's Inequality). For any basis of L, det L 5 llblll . . . llbnll. 

Theorem 7 (Hermite 1850) For any dimension n, there is a constant c, such that for 
any lattice L E Qn there is a basis bl, . . . ,bn of L such that llblll . .. 11b.11 5 C. det L. 

We will, in fact, take c, to be the smallest such constant. So what is c,? In one 
dimension, a given lattice has only two bases, which are the two minimum nonzero 
vectors. These vectors are both exactly the size of the lattice spacing, which is also 
the determinant of the lattice. Then in one dimension, a minimum basis always has a 
ratio of exactly 1,so cl = 1. In two dimensions, we know from the analysis of Gauss's 
algorithm that the angle, a, between the vectors in a minimum basis is at least 60". 

t for basis vectors 61, b2, we know that det L = 1 1  bl 1 1  1 1  b2 1 1  sin a 2 1 1  bl 1 1  1 1  b2II sin 60" = 
21 1 llb211+. SOC2 = -. 

In 1850, Hermite proved that c, could be bounded by 2'("'). 
In 1984, Schnorr proved that cn was bounded by nn. 
Unfortunately, neither of the above proofs is algorithmic because neither one gives 

us any insight on how to actually go about computing a small basis. 
In 1983, however, Lenstra, Lenstra, and Lovisz provided an algorithm that pro-

duces a reduced basis whose size is at most 2°(n2)det L. This algorithm can also be 
used to approximate the shortest lattice vector problem. 



More on the Shortest Lattice Vector Problem 
Definition 4 A body, K ,  is said to be symmetric with respect to the origin if x E 
K j -x  E K .  Note that this statement is its own inverse, so we can think of K 
being symmetric with respect to the origin as meaning x E K H -x  E K .  

We present Minkowski's Theorem without proof as background for a useful corol-
lary. 

Theorem 8 (Minkowski's Theorem-1891) Let K be a convex body symmetric with 
respect to the origin and let lattice L E Qn be such that V o l ( K )2 2" det L.  Then I( 
contains a nonzero lattice point. 

Corollary 9 Consider the norm 1 1  1 1 ,  for any integer p. Then there is a nonzero 
a E L such that llallp 5 2 ( Y ) ' l n  where vp  = Vol ( {x: llxllp 5 I } ) .  

Example: p = m; v, = 2". Then there is a nonzero a E L such that llall, 5 
2(%)lln. Thus (maxj laj1)" 5 det L. 

We can give a proof by picture for Corollary 9 when p = oo. Let 

i.e. t is the smallest nonzero 1 1  1 1 ,  norm of lattice vectors. We place a cube with 
edge length t centered on each lattice point. The cubes may touch, but they don't 
overlap. The volume per lattice element is tn. On the other hand, we can cover the 
space with parallelepipeds of volume det L,  one per lattice point. Thus we get the 
inequality tn 5 det L. 

Figure 5:  Covering the lattice with cubes and parallelepipeds 

Next time we will discuss L3, the Lenstra-Lenstra-LovAsz theorem. We will give 
the algorithm and applications. 
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Lecture 20 
Lecturer: Michel X. Goemans Scribe: Ray Sidne y1 

Gram-Schmidt Decomposition 

First, recall 3 facts about full lattices L and their bases from last lecture: 

1. Hadamard's Inequality: If b l , . .  . , b n  is a basis for L, then IdetLl 5 Ilblll . . .I lbnII.  

2. Hermite's Thm: 'v'n > 0, there is a constant en such that for any lattice L c Qn,there 
is a basis b l , .  . . ,b, of L such that llblll ...Ilb,II 5 c,detL. 

3. 	Corollary to  Minkowski's Theorem: For any lattice L c Qn,there is a nonzero vector 
a E L such that 1 la1I N  5 ( d e t ~ ) l / "  (and hence, such that 1 la1l z  5 f i (de t~) ' / " ) .  

We remark that the corollary to  Minkowski's Theorem is as good as one can achieve, 
asymptotically, in the sense that for any n > 0, there is a lattice L c Qn such that -
A(L) 2 J$+(det~)'/". 

Now remember the Gram-Schmidt Decomposition: 
Given the vectors bl, . . . ,b,, the following procedure calculates m orthogonal vectors 

b; ,. . . ,b; such that bf is the projection of bi onto the space orthogonal to  bl, .. . ,bi-l: 

The vectors bf are not necessarily in the lattice because the coefficients pij = (bi, b;)/(bj', bj') 
are not necessarily integral. We can write bi = c:=,pijb; where Pii = 1. Equivalently, 
B = B * P  where 

Notice that det(B) = det(B*)det(P) = det(B*), since all lower triangular entries of P 
are zero. 

Claim 1 A(L) 2 mini 1 1  bf I I for any basis (bl, . . . ,b,) of L. 

l ~ h e s e  notes are based largely on notes from Atul Shrivastava, David Gupta, Marcos Kiwi, Andrew 
Sutherland, and Ethan Wolf. 



Most of the proofs of this lecture were omitted in class, but are included for completeness. 
Proof: Let a E L be a minimum-length lattice vector: llal12 = A(L). Since a E L, then 
we can write a as C:=, Xibi, Xi E Z. Let k be the last index for which X k  # 0. Then Xj  = 0 
for all j > k. By substituting in from Gram-Schmidt orthogonalization, we get 

Let us define X; for 15 j 5 n by A; sCr=jXXipi,j.Then a = C:=, X;b;. Since the b;'s are 
orthogonal to each other, we have that 

Thus llallz 2 IX;lllb;ll. Note that A; = Xtpk,~+ Xk+~pt+l,k+ ... = X k .  Thus llall2 2 
IXklllbill. Since Ar  E Z and X k  # 0, then l X k l  2 1. SO llallz 2 Ilb;ll 2 mini llb:ll. Thus 

A(L) 2 mini lib: 11. 

2 Lovasz-reduced Bases 

In Gauss' algorithm, we were performing swaps to  insure that the basis satisfies certain 
properties. In general, to insure that the first vector of the basis is reasonably short, we shall 
impose that the switching of any bi with bi+l does not decrease 1 1  bf 1 1  (recall that the Gram-
Schmidt orthogonalization depends upon the ordering of the vectors). This requirement 
can be more easily stated by using the following observation. 

Claim 2 Let (bl ,  ... ,b,) be a basis for lattice L. If we switch bi with bi+1 to produce the 
new basis (el, .. . ,c,), then b; = c; for j # i,  i + 1 and cf = bf+, + bf . 

Proof: From Gram-Schmidt orthogonalization, c; is the component of cj orthogonal to  
the span of {el, c2,... ,cj-l}, but this set is the same as {bl, b2 , .  .. ,bj-1) for j f i + 1. 
Since ci = bi for j # i,  i $ 1,we get that b; = c; for j # i ,  i $1.  We also have that cf is the 
component of ci = bi+l orthogonal to  the span of {bl, b?, . . . ,bi-l). From the original Gram-
Schmidt orthogonalization, we know that bi+1 = SO Ci  = + 
b:+, + pi+llibf . Removing the component of each side in the span of {bl, b2, ... ,bi- l), we 

get cf = bf+l + ~ + ~ , i b f .  
This claim says that we can require that switching neighboring basis vectors not help 

reduce small llbf 11's by requiring that Ilbf+, + ~ i + ~ , ~ b f1 1 '  2 llbf 1 1 '  for 15 i < n. 
We would also like for our basis vectors to  be as close to  orthogonal as possible. If they 

were strictly orthogonal, then each pi,j would be zero. But this is not possible for most 
lattices. We would like to  require that Ipilj1 be as small as possible for each i ,j. We now 
present a form of these two requirements sufficiently loose enough to  guarantee the existence 
of such a basis and to  allow for a polynomial-time algorithm. 

Definition 1 A Louasz-reduced basis for L is a basis (bl, ... ,b,) for which 



2. Ilbf+l + pi+l,ibf 1 1 2  2 illbf112 for  I 5 i < n. 

Proposition 3 Let  ( b l ,  .. . ,b,) be a Lovasz-reduced basis of a lattice L. T h e n  
n- 1

1. llblll 5 2 ~ ( d e tL ) $ .  

2. llblll 5 2 F m i n i  llbf 1 1  5 2 F h ( L ) .  

3. llblll . . .llbnll 5 2 4 ( 3  det L. 

Proof of Proposition 3: 


Claim 4 ~ ~ b l ~ ~ 2  1 5 j 5 n.
5 2 j - 1 ~ ~ b ~ ~ ~ 2 ,  

From property ( i i )of a Lovasz-reduced basis and the orthogonality of the bf 's, 
we have 

0 

Since from property ( i ) ,we know that p,?+l,i 5 a ,  we have that 

Repeatedly substituting into the above starting with i = 1 ,  we obtain 

Since b; = b,, this becomes llb1112 5 2j-111b;112, 1 5 j 5 n, which proves the 
claim. o 

Solving the above for llb,*112,we can square both sides of the definition of det L and 
perform a substitution to  obtain 

72 


(det L ) ~  fi llbj112 2 n21-jllb1112 2*11b1112n.= = 
j=1 j=1 

Raising both sides to  the power & gives 

(det ~ ) i2 2*11blll 

This proves part 1 of the proposition. 
Let k be the index for which mini 1 1  bf 1 1  is attained, so that 1 1  b; 1 1  = mini 1 1  bf 1 1 .  Then by 

the above claim: llb11125 2"' llb;1I2 5 2"-111b;112 = 2n-'mini llbf112. Taking the square root 
of both sides: 1 1  bl 1 1  5 2 9mini 1 1  bf 1 1 .  By applying Claim 1 ,  we can extend this result to: 

1 1  bl 1 1  5 ~ F A ( L ) ,which is the statement of part 2 of the proposition. 



Recall that we have bi = xi=,pi,jb; by Gram-Schmidt orthogonalization. It also follows 
from the proof of Claim 4, that llb;112 5 2"-jllbf112 for j < i. Then making use of the 
orthogonality and the fact that the coefficients satisfy property (i) of a Lovasz-reduced 
basis, we get that 

Multiplying these inequalities for all values of i gives 

Taking the square root of both sides gives 

llblll ...llb,ll 5 24(:) det L. 

This proves part 3 of the proposition. 
We now present an algorithm due to  A. K. Lenstra, H. W. Lenstra and L. LovBsz [2] 

which computes a reduced basis in polynomial time. We assume throughout that that we 
are dealing with integral lattices; i.e., we assume that every basis consists of integral vectors. 

3 Lenstra-Lenstra-Lov5sz ( L ~ )Basis Reduction Algorithm 

The algorithm receives as input a set of linearly independent vectors bl, b2, ... ,b, E Zn, 
and outputs a LovLz-Reduced Basis of L(bl, ... ,b,). 

Initialization Find the Gram-Schmidt orthogonalization (b;, b;, ... ,b i )  of (bl, b2, .  .. ,b,). 

Step 1 Make sure that property 1. of a LovBsz-Reduced Basis holds. 

For i = 2 to n do 
For j = i - 1down to 1do 

bi + bi - [pijJ bj 
For k =  1to j do 

pit + pit - rpijjpjt 
{Note that for k > j ,  b; Ibj so that is unaffected} 

Step 2 If there exists a i for which property 2 of a LovBsz-Reduced Basis is not satisfied, 
swap bi and bi+l, update the b;'s for k = i ,  i + 1,update the Pkj7sfor k = i ,  i + 1,and 
go to  step 1. 

Else return (bl, b2,... ,b,). 

Note that 

1. If the algorithm terminates, it returns a LovBsz-Reduced Basis. 



2. b;, b;, ... ,b i  are not affected in step 1,since span{bl, 132,... ,bi), for i = 1...n is not 
modified performing this step. 

3. After step 1 lpij 1 5 i. 
It is not clear that the algorithm makes any progress at each iteration. The following 

result shows that in fact L3 terminates. 

Theorem 5 The L3 algorithm terminates after 0(n2log P) iterations, where P = ma% 11 bPll 
(the superscript 0 denotes input vectors). 

Proof: Define a potential 

where D j  = [dj( k ,l)] = [(bk,bl)], ,, Hence, @(b)is a positive integer, since the D j 's are 
1 

integral matrices. 

In step 1,~ ( b )does not change because the bf's do not change. 

In step 2, let E = (el , .  .. ,en) = (bl, b2,.  .. ,bi+1, bi, . . . ,bn) be the new basis cre-
ated after swapping bi and bi+,. Since e; is the projection of ej onto the orthogonal 
of span{cl, e2,... ,ej-,}, it follows that c; = b; for j # i ,  i + 1. Furthermore, ef = 
bf+, + ~ i + , , ~ b f ,since cf is the projection of bi+, onto the orthogonal of span{bl, ... ,bi-l} 
and bLl is the projection of bi+l onto the orthogonal of span{bl,. .. ,bi). 

Moreover, since 11 b; 11 .. . I 1  b i  11 = det(L) = 11 c; 11 .. . I 1  e: 11 we have that 11 bf 11 11 bf+, 11 = lief 11 lief+, 1 1 .  

Thus, 

Consequently, the number of iterations of the L3 algorithm is at most , o ~ ~ ~ ~ ~ g 3 ,where 
a. is the initial value of a. 

Now let b0 = {by,  bi ,  ... ,b i )  be the basis given as input. Then a. = IIyz:ll(b,")* 11 2(n -j) 

~ u tll(b,0)*11 5 ~lbjoll,thus @a 5 117l:llb:ll a h - j )  <- pa("-1) , implying that log a0 5 n(n -

1)log P. It follows that the algorithm terminates after executing step 2 at most nI's,ik\r$ = 
0(n2log P )  times. 

(Note that in the proof above the number 314 used in condition (ii) could be replaced 
by 1- E for any E > 0 and the theorem would still hold). 

Corollary 6 The L3 algorithm performs 0(n5log P) arithmetic operations. 

The issue of how large the bi7scan become during the L3 algorithm was not covered in 
class. The proof that at any time size(bi) remains polynomially bounded can be seen in last 



year lecture notes. In fact it can be shown that at any time 11 bi 11 5 (1  + 2,4?"+'fi)"pfi. 
This result completes the proof that the L3 algorithm runs in polynomial time. 

Beginning this lecture we shall be studying applications of these results in cryptography 
and simultaneous diophantine approximation. 0ther applications of the results we have 
seen relate to polynomial-time integer linear programming for programs of fixed dimension 
and polynomial-time factorization of polynomials over the rationals. 

4 Diophantine Approximation 

In a general sense, the Diophantine approximation problem is about how to "round" a 
number a E R ,  meaning that we replace it by a rational number which is of a sufficiently 
simple form and at the same time sufficiently close to  a .  If we prescribe the denominator to 
q of this rational number plq, then the best choice for p is [cuq]. The error resulting from 
such a rounding is 

We shall find, however, that often this approximation is not good enough. A classical result 
of Dirichlet says that if we do not prescribe the denominator, but only an upper bound M 
for it, then there always exists a rational number p/q such that 

There also exists a classical method to  find such a rational number p/q: this is the so-called 
continued fraction expansion of a. For an irrational number a, this expansion is infinite; 
for a rational number a, it is finite and of polynomial length. 

Khintchine (1956) even showed that continued fractions can be used to  solve the follow-
ing best approximation problem. 

Given a E Q (or E W)and an integer M > 0, find a rational plq with 0 < q 5 M 
such that la - p/ql is as small as possible. 

This often produces very good approximations. For example, if a = R and M = 150 the 
best approximation we can obtain using q 5 150 is 3551113 = 3.1415929. 

Simultaneous Diophantine Approximation (SDA) 

Suppose now we wish to approximate several values at once. i.e. we are given M = 100 and 
we wish to approximate al = .1428, a2= .2213, a3= .6359. Note that al + a2+ a3= 1. 
If we approximate each value separately, we find that = 3 = .I428 a - 2 -

' 9 2  - 9 -
.2222.. . ,E 3  = 1-

43. 11 - ,6363 a .  Unfortunately, + a + fi f 1. Thus, as a group these 
92 93 

approximations are not good, since we would like our approximations to  mantain "simple7' 
equalities relating the ai's. This is known as the SDA problem and is stated as follows: 

Given a l , - .  ,anE Q, integer M > 0, and 0 < E < 1,find p l , - .  ,p,,q E Zs.t. 
0 < q I M, lqai - pi1 5 E for all i. (Note that lqai - pil 5 E is equivalent to  
lai - 5 ;). 



An equivalent statement of the problem is: given 0 < E < 1, M > 0, and a = 
(al, .- , an )T  find y = ( y , . . ., y )Tsuch that lla - yll, < . Now, if E is too small, 
pi and q may not exist. So we can look at this as a decision problem. Unfortunately, this 
decision problem has been shown to be NP-complete by Lagarias [I]. It has been shown, 
however, that for E sufficiently large, a solution always exists. 

Theorem 7 (Dirichlet) SDA has a solution if M 2 E-" . 

Proof: Define a lattice L & Qn+' by L = L(bo,... ,b,) where 

where 6 = tn+'. Since det(L) = 6 = E+l and dim(L) = n + 1,by Minkowski's Corollary 
there exists a E L, a # 0 s.t. llallrn 5 (de t (~ ) )*  = t. Hence, there exist q,pl, ... ,pn E Z 
s.t. a = qbo+ Cy=gpibiwith lai 1 5 t for all i,  or, equivalently, 

2. a, = qS < E, or, equivalently, q < E-" < M. 

To complete the proof, we need only check that q > 0, (w.1.o.g. we can assume that q 2 O 
since we can always take -a instead of a). Now, if q = 0 then by l., lpil < E for all i. But 
we know that pi E Z and that pi # 0 for some i since a # 0. However, this contradicts the 
fact that 0 < E < 1. 

Unfortunately, the proof is not constructive, since Minkowski's Corollary insures the 
existence of a ,  but doesn't give a procedure for finding it. However, if we make a stronger 
restriction on the value of M we can find a polynomial time solution to  the problem. 

5.1 Polynomial Time Algorithm for approximating SDA 

We solve the following problem: 

Given 0 < E < l , a l , - . -,a, E Q find p l , . - .  ,p,,q E Z such that 0 < q 5 
n s a + l~VE-"and lqai -pil 5 E for all i. 

This is a weaker version of the problem, but it can be solved in polynomial time. 
n n+l

To prove this we make use of the L3 algorithm. But now we use 6 = 2--tn+l in 
the basis L defined above. Using L3 we can find c E L, c # 0 (the first vector of the 



Loviisz-Reduced Basis) s.t . 

Hence we can find q,pl, . - ,pn s.t. c = qbo+ C:=,pibi, lcil 5 t i  or, equivalently, 

by solving a simultaneous equation which is done in polynomial time. Note that even though 
the lattice L is not integral the L3 algorithm works. Another approach may be to  transform 
the lattice L into an integer lattice before using the L3 algorithm. 

5.2 Maintaining "Simple" Inequalities 

We now show that the approximations obtained by this algorithm do in fact maintain 
"simple" inequalities. Suppose we have an input vector x E on,x = ( a l , .  . ,a,)  and we 
run this vector through the SDA algorithm described above, yielding y = (7,. . , ). 
Then the following theorem holds: 

Theorem 8 If ax 5 b where b E Z , a  E Zn and C lail < $, then ay 5 b. 

Proof: 

b-ay  = 

2 
--

( b  - ax) + a(x - y) 

a(x - Y) {since ax  5 b) 

C ai(xi - yi) 

But b - ay is rational with denominator equal to  q.  Therefore, b - ay > 0. 

5.3 Repairing "Approximate" Inequalities 

We saw that a "simple" inequality on x will also hold for its approximation y obtained by 
our algorithm for simultaneous Diophantine approximation. In fact, if a "simple" inequal-
ity "almost" holds for x ,  then the inequality holds for y, once passed through the SDA 
algorithm. 




