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18.415/6.854 Advanced Algorithms November 12, 1996 

Lecture 15 
Lecturer: Michel X.  Goemans Scribe: Salil Vadhan 

Arora's (1 + E)-ApproximationScheme for the 
Euclidean TSP 

In the last lecture, we saw that, given any n points in [O, 112,Karp's partitioning algo- 
rithm finds a tour whose length is longer than the optimal tour by an additive factor 
of at most o(fi). In this lecture, we will see another partioning-based algorithm, 
due to Arora [I],which finds a tour of length at most (1+ E) OPT in time no('/') for 
any E > 0. A similar result was also obtained by Mitchell. 

First, we observe that we can make some simplifying assumptions about the loca- 
tions of our cities. Given any finite set S of points in the plane, the bounding box of 
S is the smallest rectangle (with sides parallel to the coordinate axes) which contains 
all of S .  The size of a rectangle is the length of its longest side. 

Claim 1 Suppose there is an approximation scheme1 for instances of the Euclidean 
TSP2 in which the n cities lie in a bounding box of size at most n2 and the distance 
between any two cities is at least 1, or 0. Then there is an approximation scheme for 
all instances of the Euclidean TSP. 

Proof: Clearly, we can scale to make the bounding box size n2 without changing 
the relative lengths of any tour. Moreover, if the bounding box was the smallest 
possible, the length O P T  of the optimum tour is at least 2n2 (since there must be 
cities on the 2 shortest sides). Now, consider the instance obtained by rounding the 
coordinates of every city to the nearest integer. In the rounded instance, the distance 
between any two distinct cities is a t  least 1. Moreover, in the transformation, every 
city has moved by at  most a/2.For any tour T, let 1(T) and l'(T) denote its 
length in the original and transformed instances respectively. Since we can perform 
an excursion from the new location to the old location of any city (or vice versa), we 
derive that 

lZ(T)-Z1(T)l5 f i n .  (1) 

Thus, if we have a (1+8)-approximation algorithm for the rounded instance, we get 
that the tour produced T has a length satisfying 

'By approximation scheme, we mean a 1+ €-approximation algorithm for any fixed E > 0. 

2We always mean the Euclidean TSP in two dimensions. 




O P T  
= (1+€ ' )OPT+ (2+e1)JZn 5 (1+e t )OPT+ (2+e1)JZ- 2n 

1+el+  O P T  5 (1+ ~ ) n ,
2n 

whenever, for example, 6' = 0.86, 6 < 1, and n 2 1016 (but remember 6 is fixed so 
this last condition is not a problem). 

The partitioning in Arora's algorithm works differently than in Karp's algorithm. 
Arora's algorithm looks at what is called a '113: 213-tiling". Informally, a 113:213-
tiling is a recursive partitioning of the bounding box into smaller rectangles by hor-
izontal and vertical lines so that each line partition divides the longest side s of the 
corresponding rectangle into two pieces whose length is at  least 113 the length of s. 
We also require that each vertical (resp. horizontal) line partition goes "slightly" to 
the left or to the right (resp. slightly above or below) of a city. Slightly, for example, 
can be understood as off by 612 where 6 represents the smallest gap between two dis-
tinct x- or y-coordinates of cities. The goal of this is to allow only a small number 
of possible x- and y-coordinates for line partitions (namely 4 4 ,  while avoiding the 
problem of having to assign cities that fall right on a line partition to either side of it. 
However, it may not be possible to have such a line partition and satisfy the 113:213 
requirement. This is the reason for the somewhat complicated definition that follows. 

Definition 1 Let R be a rectangle in R2 with sides parallel t o  the coordinate axes. 
Let s be the  longest side of R and let is1 be i t s  length. A line-partition of R is 
a partitioning of R in to  two smaller rectangles by a line-segment perpendicular to  s 
and at  a distance of 6 of a city. A line-partition P i s  valid iff one of the following 
conditions holds: 

1. P divides s in to  two segments, each of length at least 1~113. 

2. There are n o  line-partitions satisfying (1) and P can be moved to  the center of 
the rectangle without crossing over any  cities. 

A 113:213-tiling of a rectangle i s  a recursive partitioning of a rectangle by valid 
line-partitions until  there i s  at  mos t  one city in the interior of any  rectangle. (See 
Figure 1.) 

Figure 1 gives an example of a 113:213-tiling. Notice that line partition 3 does 
not divide the longest side of the corresponding rectangle into pieces of relative length 
at least 113. 

How deep can the recursion in a 113:213-tiling be? Note that the sizes of the 
rectangles need not decrease at each stage, because the first partition of a square 
produces two rectangles of the same size as the original square. Also, if the cities are 
all near the sides of the rectangle, no valid line-partition will cut the longest side s 
into pieces of length at  least ls1/3. However, after at most four levels of recursion, 



Figure 1: A 113:213-tiling 

all the remaining rectangles will either have size at most 21~113or will have no cities 
in their interior. Observe that a rectangle of size 1 / f i  has at  most one point in its 
interior. Thus the recursion has depth at most 4 ( f i n 2 )+ 1 = O(1ogn). 

The key theorem underlying Arora's algorithm will tell us that there is a near- 
optimal tour that doesn't cross any of the partitions we made too often and that we 
can find such the best such tour quickly. In order to make this precise, we need to 
specify the points at which we will allow crossings. Let m = r c logn l~ ]  for some 
constant c to be specified later. Divide each line segment drawn in our partition into 
m equally-sized segments. We call the midpoints of these segments portals. We will 
look a t  tours which cross our partition only at portals. 

Definition 2 A tour is called m-light (with respect to a given tiling) iff the following 
conditions hold: 

1. Each line partition is crossed at most rn times and only at portals. 

2. The tour is not self-crossing, but it may meet itself at portals. 

To clarify Part 2 of the above definition, see Figure 2. We allow a tour which goes 
from city a to city b and from city c to city d via portal p; this is an example of a tour 
which meets itself at a portal. However, we do not allow a tour which goes from city 
a to city d and from city b to city c both via portal p; this is a self-crossing. Figure 3 
gives an example of a 3-light tour. 

The main theorem behind Arora's algorithm is the following: 

Theorem 2 1. There exists a 113: 213-tiling and an m-light tour whose length is at 
most 1 + t times the length of the optimal tour. 
2. The best m-light tour over all 113: 213-tilings can be found in time no('/') b y  dy-
namic programming. 



Figure 2: Crossings 

Figure 3: A 3-light tour 

Proof: We first prove part 1. We start with the empty-tiling and the optimum 
tour and calculate how much the length of the tour must increase as we modify it to 
be m-light at  each successive refinement of the partition. Consider a single rectangle 
R at  some stage of our partition. Let T be the total length of the tour within R and 
let W be the size of R. We treat the problem in two cases: 

Case 1: T 5 mW/3. Let p = 3TIW 5 m. Consider a random line segment which 
cuts the longest side of R into a fraction selected uniformly between 113 and 213. 
Then 

where the sum is over all segments e of the tour which lie in R and I ,  denotes the 
length of e. So there exists a line segment with a t  most p 5 m crossings. We may 
slide this segment to the nearest city on either side without changing the number of 
crossings, so there exists a valid line-partition with at  most p crossings. Now, moving 



each crossing to the closest portal, the length of the tour is increased by at  most 
pW/m = 3T/m. Thus the new tour is longer than the old tour by a factor of at  most 
1+ 3/m. 

Case 2: T > mW/3. Take any valid line partition of R. The tour might cross 
this partition many times, say k times. However, we can use the same trick as in 
Karp's partitioning algorithm to reduce the number of crossings to 2 while not in- 
creasing the length much: Split the ith crossing point into two points, i and it,one on 
each side of the boundary. Now connect all these (split) crossing points in a loop that 
only crosses the line partition between 1 and 1' and between k and kt. Add another 
k edges which pair up consecutive points in this loop using the shorter of the two 
possible perfect matchings. (See Figure 4.) Now the tour, along with these additional 

Figure 4: Short-circuiting the crossings 

edges forms a connected graph in which every node has even degree. So there is an 
Eulerian path, i.e. a tour which uses every edge exactly once. This is longer than the 
original tour by at  most 3W (since the line partition has length at  most W )  and it 
crosses the line partition at  most four times. These crossings can occur in only two 
places (between 1and 1' and between k and kt), so, if there are more than two edges 
crossing, one of these points must be crossed at  least twice. Removing two of the 
crossings at  one of these points still leaves a connected Eulerian graph (the degrees 
of two nodes have each been reduced by two), so we can find a new Eulerian path (at 
no additional cost), which crosses the line partition at  most twice. Now we need to  
move these crossings to portals, which increases the tour length by a t  most 2W/m. 
Our tour length has increased by at  most 3W + 2W/m 5 (9 + G/m)T/m 5 10T/m 
(as long as m > 6, but this is okay since m + co as n +=co.) So the length of the 
tour within R has increased by a factor of at  most (1+ 10/m). 

There is one small problem -the tour might now cross itself. First we deal with 
crossings that occur at  points other than portals. We can introduce a fictitious pair 
of nodes a t  each self-crossing and short-circuit as above to remove the crossing. For 



example, if the tour goes from city a to city b and from city c to city d and these 
two paths cross at point x, then we introduce two fictitious nodes xl and x2 at point 
x. We then either (1)connect xl to a and c and x2 to b and d, or (2) connect x2 
to a and d and x2 to b and c. One of these two possibilities must yield a connected 
Eulerian graph, so there is a new tour which does not cross at x. In the first case, 
this tour goes from a to x to c and from b to x to d. We no longer need x as an 
intermediate point, because we can go directly from a to c and from b to d, resulting 
in a strictly shorter tour. However, this may introduce other crossings, in which case 
we repeat. Since there are only finitely many possible tours on n nodes and since 
the length strictly decreases during the short-circuiting, this process must terminate, 
resulting in a tour that does not meet itself, except at portals. 

To deal with crossings at portals, we do the same thing, introducing a fictitious 
node and short-circuiting. However, we cannot remove the portal as an intermediate 
point since we may only cross line-partitions at portals. Doing this for all crossings at 
portals, we obtain a tour which does not cross itself anywhere and meets itself only 
at  portals. 

If we perform this procedure on each rectangle at some stage of the refinement 
process, we increase the total length by a factor of at  most (1+ cl/m) for cl = 10. 
Thus the total increase over all levels is a factor of (1+ cl/m)o(lOgn)<- e'/2 <- 1+ t, 
for c < 1,if we choose the constant c in the definition of m appropriately. This proves 
part 1of the theorem. 

Now we need to show how to find the best m-light tour. This is done by dynamic 
programming. The idea is to show that we can break the problem of finding the 
best m-light tour into nO(l/') subproblems and that we can solve each subproblem 
efficiently given solutions to all of its subproblems. First we describe and enumerate 
all the subproblems. 

Every line-partition in a 113: 213-tiling occurs at an x & 6 or y & 6 coordinate 
of a city. Consider all the rectangles defined by these coordinates. There are at 
most (2;1)2 

= O(n4) such rectangles. Each side of each rectangle comes from some 
line partition, so there are at most (2)ways to place portals on any side of a given 

4
rectangle. This makes for at  most (2,") = O(n8) possible portal placements on each 
rectangle. Any m-light tour must cross the boundary of the rectangle in 2k 5 4m 
places (at most m times for each side). The number of ways of choosing 2k objects 
out of a set of 4m objects with replacement is 

So the total number of ways of choosing the places a tour crosses the boundary of a 
given rectangle with given portal placements is at most 



Given a choice of 2k portals in which the tour crosses some rectangle, there are a 
number of ways these crossings can be paired up to specify which portal the tour exits 
from after each entry. The number of pairings which can be made with non-crossing 
curves is equal to the number of properly parenthesized expressions consisting of k 
left-parentheses and k right-parentheses. This is well-known to be (2,k) / ( k  + I), the 
kth Catalan number, which is bounded above by 22" 24m. 

A single subproblem consists of a rectangle with portal placements, and a speci-
fication of which portals are being used and how they pair up. We have shown that 
there are O(n12212") = no('/') subproblems. We now describe how to solve each 
subproblem optimally, i.e. find the shortest set of paths connecting the given pairs 
of portals and collectively visiting all the cities within the rectangle. 

Solving the subproblems corresponding to the rectangles with a t  most one city 
inside can be done trivially (since there are at most 2m different ways of visiting the 
city inside, if any). 

To find the optimal solution to a larger subproblem P, consider all possible line 
partitions L of the rectangle into two smaller rectangles R1 and R2. Then consider all 
possible ways for the tour to cross L and all possible ways to match these crossings 
with the pairing of portals specified by P. Each possibility defines subproblems Pl 
and P2for R1 and R2, respectively. Solutions to the subproblems PI and P2yield a 
solution to P whose cost is the sum of the costs for PI and P2. The optimum solution 
for P is simply the minimum of this over all the aforementioned possibilities. By 
analysis, similar to the one done above, there are only no(lld possibilities to consider 
(since there are at most no('/') possibilities for Pl and P2). Thus we can, by dynamic 
programming, compute the optimum for all the subproblems in time nO(l/'). 
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