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Abstract 

Tempo is a simple formal language for modeling distributed systems with (or without) timing 
constraints, as collections of interacting state machines called Timed Input/Output Automata. 
Tempo provides natural mathematical notations for describing systems, their properties, and rela
tionships between their descriptions at different levels of abstraction. An associated Tempo Toolkit 
supports several validation methods for systems described using Tempo, including static analysis, 
simulation, interactive proof using the PVS theorem-prover, and model-checking using the Uppaal 
model-checker. 

This three-part document consists of: (I) an informal tutorial that describes the underlying 
mathematical Timed Input/Output Automata framework and demonstrates how to use the Tempo 
language to model typical timed systems; (II) a systematic description of the Tempo language 
constructs; and (III) a reference manual containing a complete definition of the Tempo language. 
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1 Introduction 

Tempo is a simple formal language for modeling distributed systems as collections of interacting 
state machines called Timed Input/Output Automata [2]. Timed Input/Output Automata are often 
referred to as Timed I/O Automata, or just TIOAs. The distributed systems in question may have 
timing constraints, for example, bounds on the time when certain events may occur, or bounds 
on the rates of change of component clocks. They may use time in significant ways, for example, 
for timeouts, or for scheduling events to occur periodically. Timed I/O Automata, and the Tempo 
language, provide good support for describing these constraints and capabilities. 

1.1 Timed I/O Automata 

The Timed I/O Automata mathematical framework is an extension of the classical I/O Automata 
framework [6, 7, 4], which was developed many years ago in the theoretical distributed algorithms 
research community. I/O Automata are very simple interacting asynchronous state machines, with
out any support for describing timing features. Although they are simple, I/O Automata provide a 
rich set of capabilities for modeling and analyzing distributed algorithms. I/O Automata support 
description of many properties that distributed algorithms are required to satisfy, and mathemati
cal proofs that the algorithms in fact satisfy their required properties. These proofs are based on 
methods such as invariant assertions and compositional reasoning. I/O Automata also support rep
resentation of algorithms at different levels of abstraction, and proofs of consistency relationships 
between algorithm representations at different levels. Because of these capabilities, I/O Automata 
have been used fairly extensively for modeling and analyzing asynchronous distributed algorithms, 
and even for proving impossibility results about computability in asynchronous distributed settings. 

However, ordinary I/O Automata cannot be used to describe distributed algorithms that use 
time explicitly, for example, those that use timeouts or schedule events periodically. And they do 
not provide explicit support for describing timing constraints such as bounds on message delay 
or clock rates. Moreover, without support for timing, I/O Automata could not be used for other 
applications such as practical communication protocols. These limitations led to the development 
of Timed I/O Automata, which include new features—most notably, trajectories— specifically 
designed for describing timing aspects of systems. 

Like ordinary I/O Automata, Timed I/O Automata are simple interacting state machines. 
They have a well-developed, elegant theory, which is presented in a separate monograph [2]. Like 
I/O Automata, Timed I/O Automata provide a rich set of capabilities for system modeling and 
analysis. Methods used for analyzing TIOAs are essentially the same as those used for ordinary 
I/O automata: invariant assertions, compositional reasoning, and correspondences between levels of 
abstraction. However, all of these methods needed to be modified somewhat from their counterparts 
for I/O Automata, to take into account the timing of events. 

1.2 Intended applications 

Distributed algorithms are not the only application domain for which Timed I/O Automata are 
suited. In fact, Timed I/O Automata can be used to model practically any type of distributed 
system, including (wired and wireless) communication systems, real-time operating systems, em
bedded systems, automated process control systems, and even biological systems. The behavior of 
these systems generally includes both discrete state changes and continuous state evolution; TIOA 
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is designed to express both kinds of changes. 
Many distributed systems involve a combination of computer components and real-world, phys

ical entities such as vehicles, robots, or medical devices. Systems involving interaction between 
computer and real-world components usually have strong safety, reliability, and predictability re
quirements, stemming from the requirements of real-world applications. This makes it especially 
important to have good methods for modeling the systems precisely and analyzing their behavior 
rigorously. TIOA can be used to model both computer and real-world system components, as 
well as their interactions. It provides a simple, elegant, and powerful mathematical foundation for 
analyzing these systems. 

1.3 The Tempo language and tools 

I/O Automata and Timed I/O Automata are fine mathematical modeling frameworks for dis
tributed systems. They have proved to be tractable for researchers to use, by hand, in describing 
and analyzing distributed algorithms, communication protocols, and embedded systems. However, 
computer support could make this type of work quite a bit easier, which is why we have been 
working on developing the Tempo Language and Toolkit. 

The Tempo language provides simple formal notation for describing Timed I/O Automata 
precisely, based on the pseudocode notation that has been used in many research papers. It also 
allows specification of properties such as invariant assertions and relationships between automata 
at different levels of abstraction. The Tempo toolkit contains tools to support analysis of systems 
described using Tempo. These include lightweight tools, which check syntax and perform static 
semantic analysis; medium-weight tools, which simulate the action of an automaton and support 
model-checking using the Uppaal model-checker [3]; and heavyweight tools, which provide support 
for proving properties of automata using the PVS interactive theorem-prover [9]. The overall 
architecture of the Tempo toolkit has been designed to facilitate incorporation of other validation 
tools in the future. 

The Tempo language has a rather minimal syntax, which corresponds closely to the simple 
semantics of the TIOA mathematical framework. In fact, the mapping between a Tempo automaton 
description and the TIOA that it denotes is pretty transparent. For example, an automaton’s 
discrete transitions and continuous evolutions are described directly in Tempo, by “transitions” 
and “trajectories”, respectively. The minimality of Tempo syntax and the close correspondence 
between Tempo syntax and TIOA semantics make it easy to analyze systems of TIOAs based 
directly on Tempo code. 

The minimality of the Tempo language does not limit its expressive power: Tempo is capable of 
describing very general systems of TIOAs. Of course, many analysis tools—especially automated 
ones like model-checkers—are not capable of handling fully general Tempo programs. Our approach 
here is to define sublanguages of the general Tempo language that are suitable for use with particular 
tools. This approach contrasts with the usual approach taken by developers of automated tools, 
which limits the expressive power of the language at the outset. Writing system models in a general 
language such as Tempo makes it possible to use a variety of tools, both automated and interactive, 
to assist in validating the models. 

The Tempo language is a variant of the earlier IOA language [1], which was designed for use 
with basic (untimed) I/O Automata. Over many years, MIT students and other researchers pro
duced various tools for IOA, including a translator to the Larch theorem-prover, a simulator, and 
an automatic generator of distributed code from IOA models. However, these tools were never 
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engineered professionally for wide use. We hope and intend that the new Tempo tools will be 
usable by many people, including researchers, teachers, students, and system developers working 
on many types of distributed systems. Our target application areas include distributed algorithms, 
communication systems, embedded systems, and process control systems. 

1.4 Organization 

This document is organized in three parts: 

1. An informal tutorial designed to get you familiar with the Tempo language. This part de
scribes the underlying Timed I/O Automata mathematical framework, explains the “philoso
phy” of Tempo programming, and demonstrates how to use the Tempo language to model typ
ical timed systems. This tutorial features six examples, which illustrate typical applications, 
including distributed algorithms, communication protocols, and vehicle control. Reading the 
tutorial should be sufficient for you to begin writing complete Tempo descriptions. 

2. A more systematic, detailed description of the Tempo language constructs, including all of 
the control structures and the current data types. 

3. A reference manual containing a complete definition of the syntax and semantics of the Tempo 
language. 

This document draws from various descriptions of IOA [1] and TIOA [2]. It documents the 
Tempo language itself, but not the tools used to process Tempo programs. For documentation on 
the Tempo Simulator, see []. For documentation on theorem-proving using Tempo and PVS, see []. 
Finally, for documentation on model-checking using Tempo and Uppaal, see []. 
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Part I 

Tempo Language Tutorial 

2 Tutorial Introduction 

Part I of the User Guide and Reference Manual is a tutorial on Tempo programming. The main 
content of this part is a collection of six examples, which together illustrate most interesting aspects 
of Tempo programming. We have chosen the examples from the application areas of distributed 
algorithms, communication protocols, and hybrid systems; hybrid systems are systems that exhibit 
both interesting discrete behavior and interesting continuous behavior, for example, process-control 
or vehicle-control systems. We hope this selection of examples will make it easy for people interested 
in any of these areas to get started writing Tempo programs. 

We accompany the examples with discussion about their interesting properties and about their 
significance to their respective fields. We also use the examples as the basis for a running discussion 
about Tempo language design choices and usage patterns. 

We begin, in Section 3, with a brief review of the underlying Timed I/O Automata model, 
basically summarizing technical material from [2]. The first three examples are basically toys. 
First, in Section 4, we present a simple timing-based shared-memory mutual exclusion algorithm 
designed by Mike Fischer. This example has become a standard initial case study for papers on 
formal methods for timed systems. It illustrates the use of invariants to prove correctness, in this 
case, invariants involving time. Next, in Section 5, we consider another toy example, this one 
involving a race between two tasks; the interesting issue here is the time taken for the tasks to 
complete their work. This example illustrates the use of abstraction relationships to prove system 
properties—in this case, time bounds. Then, in Section 6, we describe a simple timeout-based 
failure-detection system; this example illustrates the use of composition of TIOAs. 

The last three examples are a little more complicated, and are designed as introductions to 
Tempo programming for particular application areas. In Section 7, we present a prototypical 
distributed algorithm, namely, a leader-election algorithm that uses a separate failure-detection 
service. Section 8 contains a prototypical protocol for wired communication networks, namely, 
a Bellman-Ford-style shortest-path-determination algorithm. Finally, Section 9 contains a hybrid 
system example: a simple vehicle controller. 

3 The Timed I/O Automata Mathematical Framework 

Tempo is based on the Timed Input/Output Automata mathematical framework, as described in 
the monograph [2]. Timed Input/Output Automata are often referred to as Timed I/O Automata, 
or just TIOAs. Here we give a brief introduction; you should refer to the monograph for all the 
details. 

3.1 Timed I/O Automata 

A Timed I/O Automaton is a kind of nondeterministic, possibly infinite-state, state machine. 
Formally, it is a tuple (X, Q, Θ, E, H, D, T ), where E is further partitioned into I ∪ O. Here, X is 
the set of state variables, which are regarded as internal to the automaton. The state of a TIOA 
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is described by a valuation of the state variables, which is, formally, a mapping from X to values 
for the variables. Q is the set of states (a subset of the set of valuations of X), and Θ is the set of 
start states. 

A TIOA also has two sets of actions: E representing the set of external actions and H rep
resenting the set of hidden actions. The external actions are subdivided into input actions I and 
output actions O. The external actions are used to describe the TIOA’s externally-visible behavior, 
and in particular, its communications with other TIOAs. 

The state of a Timed I/O Automaton can change in two ways: instantaneously by the occurrence 
of a discrete transition, or over time, according to a trajectory. D represents the set of discrete 
transitions; formally, each discrete transition is a (state, action, state) triple. Thus, each discrete 
transition is labelled by some (internal or external) action. T represents the set of trajectories; 
formally, each trajectory is a function from a left-closed time interval to valuations of X, which 
describes the state evolution over the time interval. Trajectories may be continuous or discontinuous 
functions. 

There are a few points worth noting here. First, every variable comes equipped with two types, 
a static type and a dynamic type. The static type simply describes the set of values that the 
variable may take on. The dynamic type, on the other hand, describes the allowable ways in which 
a variable may evolve. For instance, a variable may have static type Real and dynamic type equal 
to the set of piecewise continuous functions from time intervals to Reals. Dynamic types are used 
to constrain how the variables may evolve during trajectories. 

Second, a TIOA must satisfy a few simple axioms. Most of these are closure properties for the 
set T of trajectories. Two other axioms describe “enabling” properties for input actions and for 
time-passage: Basically, a TIOA is not supposed to prevent the occurrence of an input action. And 
it is not supposed to prevent the passage of time unless it has some action that it wants to take 
before time is allowed to pass. 

This last comment suggests that TIOAs may sometimes prevent the passage of time. If we 
think of TIOAs as standard imperative programs, this may seem somewhat odd—after all, how can 
a program prevent time from passing? However, if we instead think of TIOAs as descriptive models 
for parts of systems, it is not odd at all. Preventing time-passage is simply a formal device for 
expressing time bounds. It is useful, for example, for saying that certain events, like the delivery of 
a message, must happen by a certain time. We will soon see many examples of TIOAs that prevent 
time-passage as a way of enforcing time bounds. 

Third, a TIOA executes by performing a sequence of alternating trajectories and discrete tran
sitions, in which the states match up properly. 

Finally, sometimes we may want to consider basic untimed automata, for example, to model 
asynchronous distributed algorithms. We may embed such automata in the TIOA framework by 
using trivial trajectories, which allow arbitrary amounts of time to pass, without any changes to 
the variables.1 

Figure 3.1 illustrates a simple communication channel that can be modeled as a Timed I/O 
Automaton. Arrows in the figure represent external discrete actions, through which the channel 
automaton can interact with its environment. The incoming arrow represents the input action, 

As a caution to distributed algorithms readers, we note that TIOAs, as presented in [2], do not have facilities 
for describing liveness properties of the sort that say that some event must “eventually” occur. Such properties are 
currently outside the scope of the TIOA model and Tempo tools. Earlier drafts of [2], for example, [], do include 
a preliminary treatment of liveness properties, but more work is needed to fully incorporate this material into the 
model and language. 
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send(m), by means of which the environment can inject a message m into the channel. The outgoing 
arrow represents the output action receive(m), by means of which the channel can deliver a message 
m to its environment.  

Channel 
receive(m) send(m) 

Figure 3.1: A communication channel modeled as a Timed I/O Automaton 

Figure 3.1 by itself provides no information about how (or even whether) the channel’s output 
actions are related to its input actions. To supply this missing information, we must specify 
the state variables, states, start states, hidden actions, discrete transitions, and trajectories. For 
example, suppose we want to represent a reliable FIFO channel in which every message that is 
sent is received within time b of when it is sent. Then we might represent the state of the channel 
in terms of a variable whose static type is a FIFO queue (finite sequence) of pairs of the form 
(message, deliverydeadline). Initially, the queue is empty. Another useful state variable is a Real-
valued variable now, which keeps track of the current real time, initially 0. An input action adds a 
message to the tail of the queue, together with its delivery deadline (as an absolute time, calculated 
as the current time plus b). An output action removes a message from the head of the queue. No 
hidden actions are needed. 

To express the upper bound on message delivery time, we use the trajectories. The trajectories 
allow now to increase with rate 1, which keeps now always equal to the real time, and they require 
the queue to remain unchanged. Also, trajectories may not continue past the deadline of any 
message in the queue, that is, time is not allowed to advance beyond any current deadline. This is 
just another way of saying that, if time does indeed continue to advance, then the messages must 
be delivered by their deadlines. 

If we wanted to describe a FIFO channel without any guarantees of timely message delivery, 
we could omit the now state component and use trivial trajectories that can advance time by any 
amount, while leaving the queue unchanged. (This description does not guarantee that messages 
ever get delivered.) Other types of channels may also be represented in this style, for example, 
channels that may lose, duplicate, or reorder messages. 

3.2 Invariants 

One of the most important concepts used in stating and proving properties of Timed I/O Automata 
in that of an invariant. An invariant of a TIOA A is simply a property that is true in every reachable 
state of A, that is, in every state that can be reached from an initial state of A by means of an 
execution of A. For example, one useful invariant for the time-bounded channel described above is 
the property that, for every message deadline d on the queue, now ≤ d ≤ now + b. 

Invariants are typically proved using induction on the number of steps (discrete steps and 
trajectories) in an execution. This allows us to decompose the task of proving an invariant for a 
timed system into three separate subtasks: checking that the property is true in the initial state, 
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checking that it is preserved by every discrete transition, and checking that it is preserved by every 
trajectory. Checking the initial state is generally straightforward. The interesting work occurs 
in showing the two “preservation” properties. Here, showing that the invariant is preserved by 
discrete steps typically uses discrete proof methods like algebraic substitution. On the other hand, 
showing that the invariant is preserved by trajectories usually involves continuous reasoning, about 
continuous functions, differential equations, and integrals. The inductive proof structure separates 
these two kinds of reasoning, allowing them to be carried out separately, perhaps by different people. 

3.3 Abstraction 

A crucial feature of a system modeling framework is the ability to support abstraction. Abstraction 
refers to encapsulating complex behavior of a system component inside a simpler interface, so that 
the component can be understood, and used, without knowing the details of what is inside. 

For TIOAs, the main abstraction mechanism is the projection of complete executions to external 
traces, which omit all information about state and about hidden actions. What is left is the 
information about what external (input and output) actions occur during the execution, together 
with the times at which these actions occur. A trace can be thought of as a sequence of external 
actions paired with their times of occurrence. Formally, they are presented slightly differently, as 
hybrid sequences, which are alternating trajectories and external actions. Here, the trajectories are 
trivial in the sense that they map time intervals to valuations of the empty set of variables, that 
is, to a special distinguished “null valuation”. So, the only real information that is captured by 
such a trivial trajectory is the amount of time that passes. Although expressing traces in this way 
may seem a little unnatural, it fits more neatly into the general theory of TIOAs. Anyway, if this 
bothers you, you won’t go very wrong by thinking of traces as sequences of external actions paired 
with their times of occurrence. 

The external behavior of a TIOA is just the set of traces of all of its executions. For example, in 
the time-bounded channel described above, the external behavior consists of all sequences of send 
and receive actions that represent correct, exactly-once message delivery, each message delivered 
within time b. The timing is expressed by interspersing the actions with trivial trajectories that 
indicate how much time passes between the actions. 

The TIOA framework includes notions of implementation and simulation, which can be used 
to view timed systems at multiple levels of abstraction. In particular, the TIOA framework defines 
what it means for one TIOA, A, to implement another TIOA, B, namely, that the external behavior 
of A is a subset of the external behavior of B. That is, every trace exhibited by A is also allowed 
by B. For example, our time-bounded channel implements the less constrained untimed channel 
described above. 

The notion of a simulation relation from A to B provides a sufficient condition for demonstrating 
that A implements B. A simulation relation is defined to satisfy three conditions, one relating start 
states of A and B, one relating discrete transitions, and one relating trajectories. Simulation 
relations come in two flavors: forward simulations and backward simulations. Of the two, forward 
simulations are far more commonly used, and far easier to use. This is because, in proving a forward 
simulation, the reasoning about discrete transitions and trajectories follows the normal direction 
of program execution. Proving a backward simulation requires reasoning about discrete transitions 
and trajectories in the reverse direction from normal program execution. As for invariants, proofs 
for simulation relations decompose nicely into pieces that require two distinct types of reasoning 
(discrete vs. continuous). 
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3.4 Operations on Timed I/O Automata 

The most important operation provided for TIOAs is parallel composition, by which individual 
TIOAs can be combined to produce a model for a larger timed system. The model for the composed 
system describes interactions among the components, which involve joint participation in discrete 
transitions. All TIOAs in a composition participate in trajectories concurrently, allowing the same 
amount of time to pass. Composition requires certain “compatibility” conditions, namely, that 
no output action is an output of more than one automaton, and that no hidden action of any 
automaton is shared with any other automaton. On the other hand, an output of one automaton 
is allowed to be an input of any number of other automata, and an input may be shared by any 
number of automata. 

Notice that all communication between TIOAs is by means of discrete actions. TIOA does not 
provide directly for other forms of communication, such as shared variable communication. If you 
want to use TIOAs to model a system of processes communicating by means of shared variable, 
you have two options: (1) You can model the entire system of processes plus variables as a single 
automaton. This is what we do in Section 4, for the Fischer mutual exclusion algorithm. (2) You 
can model the shared variables as automata, with inputs representing invocations of operations and 
outputs representing responses. Then the entire system of processes and objects can be modeled 
as a composition of automata. 

TIOA also does not support continuous communication, for example, transmission of a contin
uous signal between two components. The more general Hybrid I/O Automata modeling frame
work [5] allows both discrete and continuous communication among components. 

The composition operation respects traces; for example, if A1 implements A2 then the compo
sition of A1 and B implements the composition of A2 and B. Composition also satisfies projection 
and pasting results, which are fundamental for compositional design and verification of systems: a 
trace of a composition of TIOAs “projects” to give traces of the individual TIOAs, and traces of 
components are “pastable” to give traces of the composition. 

Finally, the TIOA framework provides a hiding operation for TIOAs, by which some output 
actions become reclassified as hidden. This implies that, when the new automaton is composed 
with other automata, these newly-hidden actions are no longer available for communication with 
the other TIOAs. 

3.5 Summary 

Thus, Timed I/O Automata provide precise representations for timed and untimed systems and 
their components. They allow descriptions of both discrete and continuous state changes. They 
enable us to view systems and to reason about them at different levels of abstraction. TIOAs may 
be composed, interacting through discrete actions only. 

So far, we have talked only about the underlying mathematical framework. In the remaining 
sections of Part I of the tutorial we will introduce the actual Tempo language, via a series of 
examples. 

4 Example 1: Fischer’s Timed Mutual Exclusion Algorithm 

We are now ready to present our first Tempo code example, the Fischer Timed Mutual Exclu
sion Algorithm. This simple algorithm has become famous as a standard test example for formal 
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methods for modeling and analyzing timed systems. It was invented by Mike Fischer, but it does 
not appear in any publication, unless you count an email to Leslie Lamport as a publication. An 
informal description of the example appears in [4], Chapter 24. 

This example illustrates most of the basic constructs needed for writing a Tempo program for 
a single Timed I/O Automaton, in this case one modeling a shared-memory system. The example 
also demonstrates how to express invariants using Tempo, including invariants that involve time. 

4.1 Overview of the algorithm 

In the Fischer algorithm, a collection of “processes” attempt to arbitrate their entrance to the 
critical region by accessing a single read/write shared variable called turn. The turn variable is 
supposed to indicate whose turn it is to enter the critical region. It can take on a value that is a 
process name, or else the value nil to indicate that no process owns the variable. 

Each process i that tries to enter the critical region first reads, or “tests”, the turn variable, to 
determine if anyone currently owns it. If so, process i keeps retesting. When it finally sees that the 
variable is currently un-owned (value = nil), process i moves on to the next stage of its program, 
where it writes its own name i to the turn variable. Note that this write step is done separately 
from the read step that found the variable equal to nil; this means that there is some possibility 
that another process could modify turn in between the read and the write step. 

After setting turn to its own name i, process i rechecks turn one more time to see if it is still 
equal to i. If so, process i proceeds to the critical region; if not, it goes back to the beginning of its 
program. When process i leaves the critical region, it resets turn to nil, in another write step. 

As described so far, this algorithm admits the possibility that two processes could find them
selves in their critical regions simultaneously. An example of an execution that makes this happen 
is as follows: processes i and j both enter the system, both test turn, both find turn =nil, and both 
proceed to their next stage. Next, process i sets turn to i, then checks and sees that turn is still 
equal to i, and proceeds to the criticial region. Then, process j sets turn to j, then checks and sees 
that turn is still equal to j, and proceeds to the critical region. At this point, both processes are in 
the critical region simultaneously. 

The problem is that process i has time to both set and check the turn variable during the interval 
between when process j tests the variable and sets it. This problem can be solved by the simple 
expedient of imposing an upper bound last set on the time between testing and setting, and a lower 
bound first check on the time between setting and checking, with last set strictly less than first check. 
However, it is not completely obvious that this strategy solves the problem, guaranteeing mutual 
exclusion in all situations. This is why this example is interesting enough to serve as a test case 
for formal verification methods. 

4.2 Tempo description 

Figures 1 and 2 contain our Tempo code for the Fischer mutual exclusion algorithm. 
The Tempo model describes the entire system as a single Timed I/O Automaton. As we 

noted in Section 3, TIOA (and Tempo) have no explicit facilities for modeling shared-variable 
communication. The two options are to treat the shared variables as separate object automata, or 
to use one big automaton to represent the entire shared memory system. Here we choose the latter 
option. 

9 



vocabulary fischer types 
types process, 
PcValue : Enumeration [pc rem, pc test, pc set, pc check, pc leavetry, pc crit, pc reset, pc leaveexit] 

end 

automaton fischer(l check, u set: Real) where u set < l check ∧u set ≥0 ∧l check ≥0 
imports fischer types 

signature

output try(i: process)

output crit(i: process)

output exit(i: process)

output rem(i: process)

internal test(i: process)

internal set(i: process)

internal check(i: process)

internal reset(i: process)


states

turn: Null[process] : = nil;

pc: Array[process, PcValue] : = constant(pc rem);

now: Real : = 0;

last set: Array[process, AugmentedReal] : = constant(∞);

first check: Array[process, DiscreteReal] : = constant(0);


transitions 
output try(i)


pre pc[i] =pc rem;

eff pc[i] : = pc test;


internal test(i)

pre pc[i] =pc test;

eff if turn =nil then


pc[i] : = pc set;

last set[i] : = (now + u set);


fi;


internal set(i)

pre pc[i] =pc set;

eff turn : = embed(i);


pc[i] : = pc check;

last set[i] : = ∞;

first check[i] : = now + l check;


Code Sample 1: Tempo description of the Fischer Timed Mutual Exclusion algorithm 

10




internal check(i)

pre pc[i] =pc check ∧first check[i] ≤now;

eff if turn =embed(i) then


pc[i] : = pc leavetry; 
else 

pc[i] : = pc test;

fi;

first check[i] : = 0;


output crit(i)

pre pc[i] =pc leavetry;

eff pc[i] : = pc crit;


output exit(i)

pre pc[i] =pc crit;

eff pc[i] : = pc reset;


internal reset(i)

pre pc[i] =pc reset;

eff pc[i] : = pc leaveexit;


turn : = nil; 

output rem(i)

pre pc[i] =pc leaveexit;

eff pc[i] : = pc rem;


trajectories

trajdef traj


stop when

∃i: process (now =last set[i]); 

evolve 
d(now) =1; 

Code Sample 2: Tempo description of the Fischer Timed Mutual Exclusion algorithm, continued 
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The code begins with a declaration of data types used in the algorithm, under the heading 
vocabulary. Here, we define type process as an abstract data type. Also, we find it convenient to 
keep track of where each process is in its program, using explicit program counters; this device 
is common in modeling shared-memory programs. For this purpose, we define an Enumeration 
data type, PcValue, which simply lists the possible valued a process’ program counter can take on. 
There are quite a lot of such values: the process could be in its remainder region (program counter 
= pc rem), where it is not engaged in trying to enter the critical region. Or, it could be about to 
test, set, or check the turn variable. Or, it could be in various stages of entering or leaving the 
critical region—in the model presented here, we have separate program counter values to represent 
situations where the process has successfully completed the trying protocol, where it is actually 
in the critical region, where it is about to reset the turn variable upon leaving, and where it has 
successfully completed the exit protocol. Of course, you could represent less (or more) granularity 
if you like. 

The actual automaton description begins with the name of the automaton, with formal param
eters l check and u set. These are real numbers representing, respectively, a lower bound on the 
time between setting and checking, and an upper bound on the time between checking and setting. 
To reflect the needed conditions for these parameters, we include a where clause, saying (most 
importantly) that u set must be strictly less than l check. The automaton imports the declared 
types, so that we can use them within the body of the automaton definition. 

Next, we have the automaton’s signature, which describes its actions. Actions are classified 
as input, output, or internal, although here, we happen not to have any input actions. That is, 
the system we are considering is “closed”. Since the entire system is being modelled by a single 
automaton, each type of action is parameterized by the name of the process that performs it. Here, 
the internal actions are associated with shared-variable accesses—the steps that test, set, check, 
and reset the turn variable. The output actions are those that mark processes’ progress through 
the various high-level regions of their code: The try(i) action describes process i moving from its 
remainder region to its trying region, in which it executes a protocol to try to reach the critical 
region. The crit(i) action describes passage from the trying region to the critical region, and the 
exit(i) action describes passage from the critical region to the exit region, where process i performs 
its exit protocol. Finally, the rem(i) action describes passage from the exit region back to the 
remainder region. 

Next, we have the list of variables that constitute the automaton’s state. First we have the turn 
shared variable. Its type is Null[process], which is a new type that includes the type process plus 
the special value nil. In general, Null is a type constructor that, given any type not containing the 
special value nil, produces a new type that is the same as the original, with the addition of nil. The 
variable turn is set initially (that is, in the initial state of the underlying TIOA) to nil. 

The next state variable, pc, represents the program counters for all of the processes; for this, we 
use an array of PcValue indexed by processes. Initially, all of the program counter values are set to 
pc rem, which means that all of the processes start out in the remainder region. 

The remaining three variables are introduced solely to express the needed timing constraints. 
First, the variable now is used to represent the real time. It is initialized at 0. The use of such a 
now variable is quite common, and convenient, in models for timed systems. 

Second, the variable last set is an array containing absolute real time upper bounds (deadlines) 
for the processes to perform set actions. Such a deadline will be in force for a process i only when 
its program counter is equal to pc set, that is, when it is in fact ready to set the turn variable. In 
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this case, the value of last set[i] will be a nonnegative real number; otherwise, that is, if the program 
counter is anything other than pc set, the value will be ∞, representing the absence of any such 
deadline. The elements of the last set array are defined to be of typeAugmentedReal, which is a type 
that includes all (positive and negative) real numbers, plus two values corresponding to positive 
and negative infinity. Initially, since none of the program counters is pc set, the values in the array 
are all ∞. 

Third and finally, the variable first check is an array containing absolute real time lower bounds 
(earliest times) for the processes to perform check actions, when their program counters are equal 
to pc check. The elements of first check are of type DiscreteReal, which means that they always have 
Real values, and moreover, they do not change between discrete actions. We do not need to use the 
type AugmentedReal here, because we will never need to set any of these lower bounds to be positive 
or negative infinity—the default, when no lower bound is in force, will be zero. 

Next, we have the detailed description of the transitions of the automaton. Recall that tran
sitions are (state, action, state) triples. The transitions are described in guarded command style, 
using small pieces of code that we call transition definitions. Each transition definition denotes a 
collection of transitions, all of which share a common action name. 

Each transition definition begins with the action name and possible parameters. Next, it has a 
precondition, which is a predicate saying when the action is enabled to occur. And finally, it has an 
effects clause, which describes the discrete changes to the state that accompany the action. Input 
actions of TIOAs have no preconditions, in general, which reflects the assumption that TIOAs are 
input-enabled. However, this example contains no input actions to illustrate this. 

To make the transitions easy to read, we have arranged them according to the typical order in 
which they should occur during execution. But note that this order is merely suggestive, and has no 
formal significance: the transitions are allowed to occur in any order, as long as their preconditions 
are satisfied. 

We explain the transition definitions briefly, one at a time. First, a try(i) transition represents 
an entrance by process i into its trying region. This transition is allowed to occur (according to its 
precondition) whenever pc[i] =pc rem, that is, whenever process i is in its remainder region. The 
result of this transition is simply to advance the program counter to pc test, indicating that process 
i is ready to test the turn variable. 

A test(i) transition represents process i testing the turn variable. This is allowed to occur 
whenever pc[i] =test. The effects show that two cases may arise: If process i finds the turn variable 
equal to nil, then it moves to the next stage of its program, which involves setting turn to its 
own index i. In this case, to record the needed upper bound on the time until it sets turn, the 
deadline variable last set[i] is set to the real time deadline for the set action to occur. That deadline 
is calculated as the current time now plus the upper bound u set given as a parameter of the 
automaton. On the other hand, if process i does not find the turn variable equal to nil, then it 
remains at the same point of its execution, ready to retest the turn variable. 

A set(i) transition represents process i setting the turn variable to its own index. This is allowed 
to occur whenever pc[i] =set. In this case, the effects are just straight-line code, without any 
branching. Process i simply sets turn to its own index; however, because the turn variable is of 
type Null[process] rather than just process, we need to use the embed operator to produce a version 
of index i that is of the right type. Then process i moves to the next stage of its program, which 
involves rechecking the turn variable. Now that the set(i) action has occurred, we no longer need 
the last set[i] deadline variable, so that is reset to its default value, ∞. However, we now need 
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to record the earliest time when process i could recheck the turn variable; thus, the earliest-time 
variable first check[i] is set to the current time now plus the lower bound l check given as a parameter 
of the automaton. 

A check(i) transition represents process i checking the turn variable to verify that it is still equal 
to its own index i. The precondition here has two parts: first, it says that process i’s program 
counter is set to check, as it should be. Second, it says that the current time, now, is at least as 
large as the earliest time at which this action is allowed to occur, as specified in first check[i]. As 
for the test transitions, two interesting cases may arise: If process i finds that turn is still equal 
to i, then it moves to the next stage of its program, which involves leaving the trying region and 
entering the critical region. On the other hand, if it finds the turn variable equal to anything else, 
then it gives up the current attempt and goes back to the testing step. In either case, it resets the 
first check earliest-time variable to its default value, 0. 

The subsequent transitions are quite straightforward. A crit(i) transition represents process i 
moving into the critical region, and an exit(i) transition represents process i leaving the critical 
region. A reset(i) transition represents process i resetting the turn variable to its default value nil, 
and a rem(i) transition represents process i returning to its remainder region. 

The final part of the automaton description is the set of trajectories, that is, the functions from 
time to states that describe how the state is permitted to evolve between discrete steps. Here, we 
have one kind of trajectory definition, named traj. This trajectory definition describes the evolution 
of the state in a way that allowed the current time now to increase at rate 1. All of the other state 
variables are of types that are defined to be discrete; these, by default, are not allowed to change 
during trajectories. The other part of the trajectory definition is a stops when condition, which 
says that a trajectory must stop if the state ever reaches a point where the current time now is 
equal to a specified deadline last set[i], for any i. That is, time is not “allowed to pass” beyond any 
deadline currently in force. 

This stops when condition is an example of a phenomenon we discussed in Section 3.1, whereby a 
TIOA can prevent the passage of time. This may look strange (at first) to some programmers, since 
programs of course cannot prevent time from passing. However, although the Fischer automaton 
may look similar to a program, it is not exactly that: it is a descriptive model that expresses both 
the usual sort of behavior expressed by a program, plus additional timing assumptions that might 
be expressed in other ways. 

4.3 Properties of the algorithm 

Tempo can be used to describe not just algorithms, but also properties that we would like the 
algorithms to satisfy. For example, the Fischer algorithm is supposed to satisfy the mutual exclusion 
property, saying that no two processes can simultaneously reside in their critical regions. This is 
a claim that the mutual exclusion is an invariant of the Fischer algorithm, that is, that it is true 
in all reachable states of the fischer TIOA. This claim can be expressed in Tempo as indicated in 
Figure 3. 

invariant of fischer: 
∀i: process ∀j: process 

(i =� j ⇒(pc[i] =� pc crit ∨pc[j] =� pc crit)); 

Code Sample 3: Tempo description of the mutual exclusion property 
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By writing this invariant definition, we are claiming that the mutual exclusion predicate is in 
fact true in all reachable states. However, just writing such a definition in Tempo (and passing it 
through the Tempo front end) doesn’t imply that the predicate is in fact always true. In order to 
verify that the predicate is indeed an invariant, we would have to carry out a formal proof, either 
manually or with the aid of an interactive theorem-prover, such as PVS. We could also check that 
the invariant holds during selected runs by simulating the protocol and checking the invariant after 
each simulated step. We could also use a model-checker, such as Uppaal, to check that the invariant 
holds for all reachable states, at least for special cases of the algorithm having small numbers of 
processes. All of these tasks are supported by existing Tempo tools. 

For example, suppose we want to carry out an interactive proof of the invariant in Figure 3 using 
PVS. To do this, we will need to define and prove several other auxiliary invariants. Specifically, it 
is useful to know that, when process i is in (or immediately before or immediately after) its critical 
region, the turn variable must be set to i; moreover, no other process j can be about to set the turn 
variable. This property is stated in Figure 4. 

invariant of fischer: 
∀i: process ∀j: process 

(pc[i] =pc leavetry ∨pc[i] =pc crit ∨pc[i] =pc reset 
(turn =embed(i) ∧pc[j] =pc set));⇒ �
Code Sample 4: Properties that hold when a process is in the critical region 

Other useful auxiliary invariants involve variables that describe timing aspects of the protocol. 
Figure 5 contains some particularly simple properties involving time variables. These simply say 
that the value of the deadline last set[i] is always in the future (no smaller than now); this is so 
whether this variable has a real value or the special value ∞. Moroever, when a process i is about 
to set the turn variable, the value of last set[i] is in fact a real number, not ∞. And in this case it is 
never very large—it is at most u set in the future, where u set is the upper bound provided for the 
set action. 

invariant of fischer: 
∀i: process (now ≤last set[i]); 

invariant of fischer: 
∀i: process 

(pc[i] =pc set ⇒last set[i] =� ∞); 

invariant of fischer: 
∀i: process 

(pc[i] =pc set ⇒(last set[i] ≤now + u set)); 

Code Sample 5: Simple properties involving time 

Finally, we have, in Figure 6, the key invariant for understanding why the algorithm works. It 
says that, if one process i is about to check the turn variable in a situation where the check might 
succeed, and if, at the same time, another process j is about to set the turn variable, then the set 
step must happen before the check step. This is exactly the condition that is needed to rule out the 
bad interleaving of steps discussed at the beginning of this section. 
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invariant of fischer: 
∀i: process ∀j: process 

(pc[i] =pc check ∧turn =embed(i) ∧pc[j] =pc set 
(last set[j] < first check[i]));⇒

Code Sample 6: The key invariant involving time 

A formal proof using PVS, using invariants like the ones above, is documented in the separate 
Tempo Theorem Prover User Guide and Reference Manual []. An informal proof sketch appears 
in [4], Chapter 24. 

4.4 Discussion 

The Fischer mutual exclusion example demonstrates how to write a Tempo program for a shared-
memory system with timing constraints. Other shared-memory algorithms can be written in a 
similar way. 

As in many shared-memory algorithms, the Fischer algorithm’s processes have a rather sequen
tial style; to model them using an essentially concurrent language like Tempo, we needed to define 
explicit structure (program counters) to keep track of the implicit sequential flow of control. Al
gorithms with more concurrency, such as typical communication protocols, have less need for such 
control structure. 

We have modeled the entire shared-memory system as a single Timed I/O Automaton. A nice 
alternative approach, as noted earlier, is to organize the system as a collection of process automata 
and shared object automata. In this case, the processes and objects interact via invocation actions 
and response actions. An invocation action is an output of a process and an input to an object, 
and represents the invocation of some operation on that object. A response action is an output 
of an object and an input to a process, and represents the corresponding response. The objects’ 
responses should be consistent with those of actual shared variables. The main advantage of this 
form of modeling is that it allows us to decompose the system into clearly separated components, 
using the formal Tempo composition facilities. The main penalty is the need for separate invocation 
and response steps, that is, the finer granularity of the model. Examples of this type of modeling 
of shared memory systems appear in [4], Chapter 13. 

The Fischer example also shows how timing constraints can be expressed using special time-
valued state variables, including a current time variable now, deadline variables, and earliest-time 
variables. These variables can be used just like other state variables, in the statements and proofs 
of invariants and simulation relations. 

5 Example 2: Two-Task Race System 

The second example consists of three things: a simple Two Task Race algorithm, a formal specifi
cation of the algorithm’s desired behavior, and a simulation relation that relates the algorithm to 
the specification. The Two Task Race algorithm is quite trivial. It involves two tasks, a main task 
and a set task. The set task simply sets a Boolean flag (once). The main task increments a counter 
until the flag is set, then decrements it, and when the counter reaches zero, reports that it is done. 
The interesting issues here involve the timing of events: each task comes equipped with upper and 
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lower bounds on its step time, and the question we ask is when the final report might happen. 
The behavior specification given for this algorithm expresses nothing more than the timing 

constraints for the report event. The simulation relation involves relationships between time-valued 
variables in the algorithm automaton and the specification automaton. An informal description of 
the example appears in [4], Chapter 23. 

This example illustrates the use of Tempo to describe systems at two levels of abstraction, and 
to relate two such descriptions using a simulation relation. Furthermore, it shows how timing issues 
can be incorporated into multi-level system descriptions and simulation relations. 

5.1 The algorithm 

Tempo code for the Two Task Race algorithm appears in Figure 7. The automaton is named TTR, 
and has four real-valued parameters representing upper and lower bounds for the two tasks. In 
particular, a1 and a2 are (positive) lower and upper bounds for the main task, and b1 and b2 are 
(nonnegative) upper and lower bounds for the set task. The actions that we consider to be part 
of the main task are the increment and decrement internal actions, which increment and decrement 
the counter, respectively, plus the report output action, which reports that everything is done. The 
only action in the set task is the set internal action. 

The state contains three “normal”, non-timing-related variables. The variable count represents 
the counter that is manipulated by the main task. It is initialized at 0. The variable flag is the 
Boolean flag that gets set by the set task. The variable reported is another flag indicating whether 
the final report has happened. 

In addition to these variables, the state contains five timing-related variables. The first is now, 
which represents the current time as before. The other four, first main, last main, first set, and 
last set, represent earliest times and deadlines for the two tasks. They are initialized to the lower 
and upper bounds given as parameters of the automaton. Their use is similar to the earliest-time 
and deadline variable in the Fischer mutual exclusion algorithm, in Section 4. 

The automaton has only four transition definitions. An increment transition represents the main 
task incrementing the counter. It is allowed to occur if the flag has not been set, and also, if 
the current time is greater than or equal to the earliest time allowed for the main task to take 
its next step. This earliest time is recorded in the first main variable, so the relevant test here is 
now ≥first main. The effect is to increment the count variable, and to reset the earliest time and 
deadline for the main task’s next step. These are set to the current time plus the given lower and 
upper bounds for the main task. 

A set transition represents the setting of the flag variable by the set task. This is allowed to 
happen if the flag is not yet set, and if the current time is greater than or equal to the earliest time 
allowed, which is recorded in first set. Its effect is to set the flag, and then reset the earliest-time 
and deadline variables for the set task to their default values. They will not be needed again, and 
so will retain these default values forever. 

The decrement transitions are analogous to the increment transitions. A decrement is allowed to 
occur if the flag has been set, if the counter is positive, and if the current time is greater than or 
equal to the earliest time allowed for the main task to take its next step. The effect is to decrement 
the count variable, and to reset the earliest time and deadline for the main task. 

Finally, a report transition is allowed to happen if the counter has reached 0 and if the current 
time is greater than or equal to the earliest time for the main task. The two flags are also checked: 
The flag must be equal to true, to distinguish the case where the counter has returned to zero from 
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automaton TTR(a1, a2, b1, b2: Real) where 
a1 > 0 ∧a2 > 0 ∧b1 ≥0 ∧b2 ≥0 ∧a2 ≥a1 ∧b2 ≥b1 

signature

internal increment

internal decrement

output report

internal set


states 
count: Int : = 0;

flag: Bool : = false;

reported: Bool : = false;

now: Real : = 0;

first main: DiscreteReal : = a1;

last main: AugmentedReal : = a2;

first set: DiscreteReal : = b1;

last set: AugmentedReal : = b2;


transitions 

internal increment

pre flag ∧now ≥first main;
¬
eff count : = count + 1;


first main : = now + a1;

last main : = now + a2;


internal set

pre flag ∧now ≥first set;
¬
eff flag : = true;


first set : = 0;

last set : = ∞;


internal decrement

pre flag ∧count > 0 ∧now ≥first main;

eff count : = count − 1;


first main : = now + a1;

last main : = now + a2;


output report

pre flag ∧count =0 ∧¬reported ∧now ≥first main;

eff reported : = true;


first main : = 0;

last main : = ∞;


trajectories 
trajdef traj


stop when now =last main ∨now =last set;

evolve


d(now) =1; 

Code Sample 7: Tempo description of the Two-Task-Race algorithm 
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the initial state, where nothing has yet happened. And the reported flag must be equal to false, to 
ensure that no report has already occurred. 

The trajectories here simply allow time to pass at rate 1, but not past the point where either 
the last main or the last set deadline is reached. 

It should be pretty clear that the Two Task Race algorithm results in a single report event 
occurring at some point in time. The interesting question here is what point in time. A little 
thought shows that the report occurs latest in situations where the increment events happen as 
quickly as possible, the set event happens as late as possible, and the decrement events happen as 
slowly as possible. On the other hand,the report occurs earliest in situations where the increment 
events happen as slowly as possible, the set happens as early as possible, and the decrement events 
happen as quickly as possible. 

Exact calculations of the bounds that arise in these two cases require consideration of messy 
roundoffs. However, if we allow a little slack in the bounds, we can conclude that a good upper 
bound on the report time is b2 + (b2 ∗ a2 / a1) + a2. Here, the first term, b2, describes the latest 
time when the set might occur, and the third term, a2, captures the time needed at the end for 
the report. The middle term essentially determines the largest number of increments that might 
occur (approximately b2 / a1) and then multiplies this number by a2, which is the longest time for 
a decrement. 

Similar calculations yield a lower bound of b1 + (b1 − a2) ∗ a1 / a2. Here, the first term describes 
the earliest time when the set might occur. The second term determines the smallest number of 
increments that might occur (approximately (b1 − a2)/a2), and then multiplies this number by a1, 
which is the shortest time for a decrement or report. (We don’t have a third term of a1 because 
the first decrement could conceivably occur immediately after the set.) 

5.2 The behavior specification and simulation relation 

In many cases, interesting properties of a system can be expressed in terms of its externally-visible 
behavior. This behavior may include not just what happens, but also when it happens. For TIOAs, 
external behavior is captured by external (input and output) actions, together with the times at 
which they occur. Formally, this external behavior is described by TIOA traces. 

A useful technique for specifying a set of TIOA traces is by using another TIOA. For the 
Two Task Race example, the traces that should be specified are exactly those containing a sin
gle report event, occurring no later than time b2 + (b2 ∗ a2 / a1) + a2, and no earlier than time 
b1 + (b1 − a2) ∗ a1 / a2. 

Figure 8 contains a Tempo description of a simple TIOA whose traces are exactly those that 
perform a single report output, and do so at some time in the interval [c1,c2]. The specification of 
interest for the Two Task Race algorithm can then be obtained by instantiating the parameters c1 
and c2 with b1 + (b1 − a2) ∗ a1 / a2 and b2 + (b2 ∗ a2 / a1) + a2, respectively. 

As usual, the bounds are captured by means of earliest-time and deadline variables, first report 
and last report, respectively. Another point of interest in this code is that TTRSpec has two separate 
trajectory definitions, named pre report and post report for obvious reasons. The pre−report trajecto
ries are forced to stop if time reaches the last report deadline. The post report trajectories are allowed 
to continue indefinitely. Alternatively, the two trajectory definitions could be combined into one, 
with no invariant, a stopping condition that is the same as that for trajectory definition pre report, 
and the evolves clause d(now) =1. This would work because after the report occurs, last report keeps 
its value at ∞, which means that the stopping condition would never be true. 
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automaton TTRSpec(c1, c2: Real) where c2 ≥0 ∧c2 ≥c1 

signature

output report


states 
reported: Bool : = false;

now: Real : = 0;

first report: DiscreteReal : = c1;

last report: AugmentedReal : = c2;


transitions 

output report

pre reported ∧now ≥first report;
¬
eff reported : = true;


first report : = 0;

last report : = ∞;


trajectories 

trajdef pre report

invariant ¬reported;

stop when now =last report;

evolve d(now) =1;


trajdef post report

invariant reported;

evolve d(now) =1;


Code Sample 8: Tempo description of the Two-Task-Race behavior specification 
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We would like to show that TTR(a1,a2,b1,b2) implements TTRSpec(c1,c2), where c1 =b1+(b1−a2)∗a1/a2 
and c2 =b2 + (b2 ∗ a2 /a1) + a2. We can do this by defining an explicit relation between the states 
of TTR and TTRSpec, and proving that it is a forward simulation relation, as described in Section 3. 

We can define a candidate forward simulation relation in Tempo using the code in Figure 9. 
This code both defines a mapping between the states of the two automata and asserts that the 
mapping is in fact a forward simulation. However, as for invariants, more work needs to be done 
to prove that the mapping is in fact a forward simulation. The code begins with the keyword 
forward simulation, followed by a name for the mapping and a set of parameters. Next, the code 
specifies the two automata involved in the mapping—here, ttr as an instance of the TTR automaton 
and ttrspec as an instance of the TTRSpec automaton. Notice that the mapping is given a direction, 
“from” the algorithm automaton and “to” the specification automaton. 

Actual parameters for these two automata are specified in terms of the formal parameters of 
the forward simulation; here, the four parameters of the TTR automaton are simply the first four 
parameters of F, whereas the two parameters of TTRSpec are calculated using the formulas that we 
described above. Next, we have a where clause, which specifies constraints on the parameters of F; 
these constraints should imply any constraints used in where clauses in the definitions of the two 
component automata (and you can check that they do, in this example). They should also include 
any new constraints needed for the mapping itself, like the two calculations given here. 

Next, we have the mapping itself, described as a predicate involving the state variables of the 
two automata. To refer to state variables of the two automata, we simply use the declared name, 
i.e., ttr or ttrspec. For instance, ttr.now refers to the state variable now of the ttr automaton. 

In this example, the mapping begins with two simple equations saying that the reported and now 
variables have identical values in the two automata. The remaining four conjuncts of the predicate 
express relationships between values of the earliest-time and deadline variables of the two automata; 
the first two of these involve ttrspec.last report and the last two involve ttrspec.first report. 

The first of the four conjuncts is an inequality that relates the deadline variable ttrspec.last report— 
which represents the upper bound we are trying to prove—to deadline variables and earliest-time 
variables in ttr. This conjunct addresses the situation where the flag has not yet been set, and 
moreover, it might not be set until after another increment has occurred; this possibility is captured 
by the non-strict inequality ttr.first main ≤ttr.last set. In this case, we calculate a bound for report 
by considering the latest time when the flag may be set (ttr.last set), calculating the largest pos
sible count at that point, and then adding the longest possible times to decrement the count and 
perform the final report. The largest possible count here is obtained by adding the current count, 
ttr.count, to the largest number of additional increments that can occur. That number is calculated 
as (ttr.first set − ttr.last main) /a1) + 1. The times between successive decrements and between the 
last decrement and the report are taken to be a2. 

The second of the four conjuncts again relates ttrspec.last report to deadlines and earliest-time 
variables in ttr. However, this case addresses the simpler situation where the flag has either already 
been set, or else must be set before another increment occurs. In this case, we calculate a bound for 
report simply by considering the latest time when all the needed decrement actions and the final report 
can occur. This is calculated by considering the latest time when the first decrement may occur 
(ttr.last main), and then considering the additional needed decrements and reports with intervening 
times of a2. 

The third conjunct relates the earliest-time variable ttrspec.first report to deadlines and earliest-
time variables in ttr. It addresses the situation where the flag has not yet been set, and moreover, 
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forward simulation F(a1,a2,b1,b2,c1,c2: Real) 
where a1 > 0 ∧a2 > 0 ∧b1 ≥0 ∧b2 ≥0 ∧c2 ≥0 ∧a2 ≥a1 
∧b2 ≥b1 ∧c2 ≥c1 
∧c1 =b1 + (b1 − a2) ∗ a1/a2 
∧c2 =b2 + (b2 ∗ a2/a1) + a2 
from ttr : TTR(a1,a2,b1,b2) 
to ttrspec : TTRSpec(c1,c2) 

mapping 

ttr.reported =ttrspec.reported 
∧ttr.now =ttrspec.now 

∧((¬ttr.flag ∧ttr.first main ≤ttr.last set) ⇒
ttrspec.last report ≥

(Real)(ttr.last set) + 
(ttr.count + 2 + ((Real)(ttr.last set) − (Real)(ttr.first main)) / a1) ∗ a2) 

∧((¬ttr.reported ∧(ttr.flag ∨ttr.first main > ttr.last set)) ⇒

ttrspec.last report ≥(Real)(ttr.last main) + ttr.count ∗ a2)


∧((¬ttr.flag ∧ttr.last main < ttr.first set) ⇒
ttrspec.first report ≤

(Real)(ttr.first set) + 
(ttr.count + ((Real)(ttr.first set) − (Real)(ttr.last main)) / a2) ∗ a1) 

∧((ttr.flag ∨ttr.last main ≥ttr.first set) 
ttrspec.first report ≤

⇒ 

max(max((Real)(ttr.first main), (Real)(ttr.first set)), ttr.now) + ttr.count ∗ a1); 

end 

Code Sample 9: Forward simulation from Two Task Race algorithm to its specification 
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it is guaranteed not to be set until after another increment has occurred; this guarantee is captured 
by the strict inequality ttr.last main < ttr.first set. In this case, we calculate a bound for report 
by considering the earliest time when the flag may be set (ttr.first set), calculating the smallest 
possible count at that point, and then adding the shortest possible times to decrement the count 
and perform the final report. The smallest possible count is obtained by adding the current count, 
ttr.count, to the smallest number of additional increments that can occur. That number is calculated 
as (ttr.first set − ttr.last main) / a2). The times between successive decrements and between the last 
decrement and the report are taken to be a1. 

Finally, the fourth conjunct relates ttrspec.first report to deadlines and earliest-time variables in 
ttr, in the situation where the flag has either already been set, or may be set before another increment 
occurs. In this case, we calculate a bound for report simply by considering the earliest time when 
all the needed decrement actions and the final report can occur. This is calculated by considering the 
earliest time when the first decrement may occur (max(ttr.first main, ttr.first set, ttr.now)), and then 
considering the additional needed decrements and reports with intervening times of a1. 

To prove that a given relation is a forward simulation relation, one must show that it relates 
initial states of the two automata, and is preserved by every discrete transition and every trajectory 
of the lower-level automaton. Such a proof may be done by hand, or with an interactive theorem-
prover. A formal proof for this example, using PVS, is documented in the separate Tempo Theorem 
Prover User Guide and Reference Manual []. An informal proof sketch appears in [4], Chapter 23. 

5.3 Discussion 

The Two Task Race example demonstrates how to write Tempo models for an algorithm and 
its behavior specification. Tempo behavior specifications are used to define external behavior of 
TIOAs, in terms of their traces. Traces capture both what happens and when it happens. For this 
example, the main focus is on when the final report event occurs. 

The Two Task Race example also shows how to describe the connection between an algorithm 
TIOA and a behavior specification TIOA using a forward simulation relation. Forward simulations 
relate the states of the two automata, and are used in proving that the algorithm meets its spec
ification. For this example, the simulation relation relates not only logical variables like Boolean 
flags, but also time-valued variables. This is a common pattern when the algorithm automaton and 
the specification automaton are time-sensitive. 

6 Example 3: Timeout-Based Failure Detector 

Our third example is a simple failure-detection system consisting of three automata: a “sender” 
process that sends periodic messages to announce that it is alive, a “receiver”, or “detector” process 
that receives these messages and notes when the sender appears to have failed, and a timed channel 
from the sender to the receiver. The system is supposed to guarantee two properties: an accuracy 
property saying that the receiver times out the sender only if the sender has in fact failed, and a 
completeness property saying that, if the sender fails, then the receiver soon times it out. 

This example illustrates the use of composition of TIOAs. The timed channel used here is a 
formal version of one described informally earlier, in Section 3.1. 
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6.1 The timed channel 

The timed channel we consider here is a simple reliable, FIFO channel. It is described as the TIOA 
TimedChannel, in Figure 10. 

vocabulary Message(M: Type) 
types 

Packet : Tuple[message: M, deadline: Real] 
end 

automaton TimedChannel(b: Real, M: Type) where b ≥0 
imports Message(M) 

signature 
input send(m:M) 
output receive(m:M) 

states 
queue: Seq[Packet] : = ∅; 
now: Real : = 0; 

transitions 

input send(m)

eff queue : = queue �[m,now+b];


output receive(m) 
pre queue =� ∅∧head(queue).message =m; 
eff queue : = tail(queue); 

trajectories 
trajdef traj 

stop when ∃p: Packet (p ∈ queue ∧now =p.deadline); 
evolve d(now) =1; 

Code Sample 10: Tempo description of a timed channel 

The vocabulary Message(M) is parameterized by a message type M and defines a Packet to 
be a pair consisting of a message and a deadline. The TimedChannel automaton itself takes two 
parameters, b, representing a nonnegative upper bound on the message delay, and the message type 
M. (We do allow the delay bound to be zero; in that case, we are saying that messages must be 
delivered without any time-passage.) As described informally in Section 3.1, the channel has only 
one type of input action, send, and one type of output action, receive. To represent FIFO behavior, 
we represent the state of the channel using a state variable queue, which contains a sequence of 
packets. Note that each of the packets in the queue contains not just the message being sent, but 
also a deadline giving an upper bound on its delivery time. 

A send(m) transition simply adds the message m to the end of queue, along with its delivery 
deadline, calculated as now + b, where b is the delivery bound associated with the channel. A 
receive(m) transition is enabled at any point when m is the first message in the queue—the value 
of the deadline variable is not relevant here. The effect of the transition is to remove the message 
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from the head of the queue. 
Time passes with rate 1 as usual, and may continue to pass as long as it does not exceed 

the value of the deadline for any message in the queue. Since the queue is FIFO, the stops when 
predicate could be stated equivalently as: queue =� ∅∧now =head(queue).deadline. 

6.2 The sender 

The sender is described as the TIOA PeriodicSend, in Figure 11. This automaton is parameterized 
by a nonnegative real number u, representing the sending period, as well as the message type M. 

automaton PeriodicSend(u: Real, M: Type) where u ≥0 
imports Message(M) 
signature 

output send(m:M) 
input fail 

states 
failed: Bool : = false;

clock: Real : = 0;


transitions 

output send(m)

pre failed ∧clock =u;
¬
eff clock : = 0; 

input fail

eff failed : = true;


trajectories 

trajdef traj

stop when failed ∧clock =u;
¬
evolve d(clock) =1; 

Code Sample 11: Tempo description of a sending process 

The signature allows the automaton to send any message from the alphabet M. The automaton 
has only one other action, a fail input, which represents the failure of the sender, by simply stopping. 
This action is an input, modeling the notion that a failure may occur at any time, and for any 
reason. 

The state includes only two variables: a Boolean flag failed, which records whether the process 
has failed, and a real-valued clock, which measures the elapsed time since the previous send tran
sition. The use of this clock variable is similar to our use of now in the TimedChannel and other 
automata, in that it measures time and increases at rate 1; it is slightly different in that this clock 
variable gets reset to 0 after each send, rather than increasing forever. 

A send(m) transition is enabled when the clock reaches the value u, provided that the sender has 
not failed. The effect of the transition is simply to reset the clock to 0. Obviously, we intend that 
the send(m) transition should accomplish something more: it should actually place the message in 
the channel directed toward the receiver process. However, we do not describe this effect within the 
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code for the sender. Rather, when the sender is composed with the timed channel, a corresponding 
send(m) transition in the channel will place the message in the channel’s message queue. A fail 
transition may occur at any time, and simply sets the failed flag to true. 

The trajectories allow the clock to increase at rate 1. Time is required to stop (in order to permit 
a message to be sent) when the clock reaches the bound u; however, this stopping requirement holds 
only if the sender process has not failed. If the process fails, this model says that the clock simply 
increases forever, but the process does not use it any longer to schedule send transitions. Note 
that, if we had omitted the failed conjunct, the automaton would force time to stop, but would ¬
be unable to perform its send transition; thus, it would stop time forever! 

6.3 The receiver process 

The final piece of the timeout system is the receiver process, which we describe as the TIOA Timeout 
in Figure 12. This automaton is also parameterized by a nonnegative real number called u, as well 
as the message type M. Here, u represents the length of time the receiver waits before declaring 
that the sender has failed. 

automaton Timeout(u: Real, M: Type) where u ≥0 
imports Message(M) 

signature 
input receive(m:M) 
output timeout 

states 
suspected: Bool : = false;

clock: Real : = 0;


transitions 

input receive(m)

eff clock : = 0;


suspected : = false;


output timeout 
pre clock =u ∧¬suspected; 
eff suspected : = true; 

trajectories 
trajdef traj 

stop when clock =u ∧¬suspected; 
evolve d(clock) =1; 

Code Sample 12: Tempo description of a receiver process for the timeout system 

The signature allows the automaton to receive any message in alphabet M, and to output 
timeout. The state includes a Boolean variable suspected, which records the receiver’s opinion about 
whether the sender has failed or not. The state also includes a real-valued clock, like the one used 
by the sender. 
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When a receive(m) transition occurs, the automaton ignores the actual message contents, and 
simply resets the clock. It also sets suspected to false, indicating that it does not currently suspect 
that the sender has failed. (In the simple case we are considering, where the sender can fail only 
once and can never recover, and where all messages are delivered reliably within a predictable time 
bound, this assignment will turn out to be unnecessary. However, it would make sense to consider 
the same receiver process in conjunction with more elaborate failure behavior for the sender, or a 
worse-behaved channel; in such cases, this assignment would play a useful role.) 

The receiver process is permitted to output timeout if its clock ever reaches u, which means that 
time u has elapsed since the previous receipt of a message from the sender (or since the beginning 
of the execution). In that case, the process sets the suspected flag to true. The precondition of the 
timeout action includes a check that suspected is false, as a way of ensuring that the receiver outputs 
timeout only once. 

The trajectories allow the clock to increase with rate 1. Time is required to stop (so that the 
process can output timeout) when the clock reaches u; however, this requirement holds only if the 
receiver has not already output timeout, that is, only if suspected is currently false. Note that, if 
we had omitted the suspected conjunct, the automaton could keep outputting timeout, but would ¬
cause time to stop. 

6.4 The complete timeout system 

The three components described in the last three subsections can be combined into a single system: 
formally, the three TIOAs denoted by the three component Tempo programs are composed to yield 
a new TIOA. Figure 13 shows how this combination is specified using Tempo. 

automaton TimeoutSystem(u1,u2,b: Real, M: Type) where u1 ≥0 ∧u2 ≥0 ∧b ≥0 ∧u2 > (u1 + b) 
components 

Sender: PeriodicSend(u1,M);

Detector: Timeout(u2,M);

Channel: TimedChannel(b,M);


Code Sample 13: Tempo description of a complete timeout system 

The description begins by naming the composed system, in this case, TimeoutSystem. The system 
has three nonnegative real-valued parameters, u1, u2, and b, and another parameter M representing 
the message type. A where clause describes constraints on the parameter values; here, the reals 
are all nonnegative, and u2 is strictly greater than u1+b. 

The description continues with a list of the system components. Each component is given 
a short name by which it can be referred to within the context of the composition. The short 
name is followed by the definition of the component, in terms of automata previously defined, 
with their formal parameters instantiated in terms of the parameters of the composed system. 
Here, the TimeoutSystem consists of the three components PeriodicSend(u1,M), Timeout(u2,M), and 
TimedChannel(b,M), where u2 > u1 + b. The short names are Sender, Detector, and Channel. 

We have already mentioned that this composed system is supposed to satisfy two key properties, 
an accuracy property and a completeness property. The accuracy property should say that the 
receiver times out the sender only if the sender has in fact failed. In terms of the given Tempo 
specifications, this property can be stated as: “For any execution α of TimeoutSystem(u1,u2,b), 
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where u1 ≥0 ∧u2 ≥0 ∧b ≥0 ∧u2 > (u1 + b), if a timeout event occurs in α, then it is preceded by a 
fail event.” 

A good way to prove this accuracy property is to define an auxiliary invariant, saying that, if 
the detector suspects that the sender has failed, then in fact it has failed. Formally, we can write 
this as Detector.suspected Sender.failed. Notice that we use the short names for the components ⇒
here to indicate whose state variables we are talking about. It should not be hard to see that this 
invariant implies the accuracy property we really want. 

To prove this invariant, we can use other auxiliary invariants, for instance, the one in Figure 14. 
This says that, if the sender has not failed, then a message is on the way to the detector and will 
get there in time to prevent the detector from timing out the sender. The statement uses two cases: 
If the queue is nonempty, then the (absolute) time by which some message in the queue will be 
received by the detector is strictly before the time at which the detector would perform a timeout. 
The latter time is calculated as the current time plus the remaining time left until the timeout, 
which is just the difference u2 − Detector.clock. On the other hand, if the queue is empty, then the 
absolute time by which some message will be sent by the sender and subsequently received by the 
detector is strictly before the time at which the detector would perform a timeout. The time when 
the sender will send the next message is the current time plus the remaining time left until the 
sender’s clock reaches u1, which is the difference u1 − Sender.clock. Then the time for that message 
to be delivered is at most an additional b. 

invariant of TimeoutSystem: 
Sender.failed ¬ ⇒

((Channel.queue =� ∅⇒(head(Channel.queue).deadline < Channel.now + u2 − Detector.clock)) 
∧
(Channel.queue =∅⇒Channel.now + u1 − Sender.clock + b < Channel.now + u2 − Detector.clock)); 

Code Sample 14: Auxiliary invariant for proving accuracy of the timeout system 

The completeness property should say that, if the sender fails, then before too long, the detector 
will perform a timeout. Specifically, we can say: “For any execution α of TimeoutSystem(u1,u2,b,M), 
where u1 ≥0 ∧u2 ≥0 ∧b ≥0 ∧u2 > (u1 + b), if a fail event occurs in α at real time t, then it is followed 
by a timeout event, within time at most b + u2.” This bound can be argued informally, in terms of 
events: After the sender fails, within time at most b, any message it has already sent is delivered. 
Then within at most an additional time u2, the detector performs a timeout. The bound could also 
be proved more formally, using a specification automaton and a forward simulation, as in the Two 
Task Race example. 

6.5 Discussion 

The timeout example illustrates a typical, simple clock-based timeout mechanism for detecting 
process failures. This and similar mechanisms are used in many distributed algorithms and com
munication protocols. The example demonstrates the use of composition in Tempo, and indicates 
how one might prove global properties of a composed automaton. 

In our formulation of the timeout failure detector, we have assumed that the clock variables 
of the sender and receiver automata progress at rate 1. Often in such examples, people make a 
somewhat weaker assumption: that the clock rate is always between 1 − ρ and 1 + ρ, for some 
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known, small nonnegative real constant ρ. This weaker assumption could also be expressed using 
Tempo notation, as: d(clock) ≥1 − rho ∧d(clock) ≤1 + rho. The same kinds of properties hold for the 
modified system as for the original system. However, we must increase the timeout bound to take 
the clock discrepancy into account, so that the receiver does not time out the sender incorrectly. 
Moreover, the increase in the timeout bound, and the clock uncertainty, lead also to an increase in 
the worst-case time to produce the timeout announcement. We leave the detailed calculations of 
these increases to the reader. 

7 Example 4: Leader-Election Algorithm 

This example illustrates a simple distributed algorithm in which several processes attempt to coor
dinate so that one of their number is distinguished as the “leader”, at any point in time. We assume 
that processes may fail and recover. Since we would like the leader to be a non-failed process, the 
identity of the leader may have to change from time to time, during the operation of the system. 

The Distributed Algorithms research literature contains many examples of leader election algo
rithms. The particular algorithm we consider here is based on one used in a proposed fault-tolerant 
extension of the DHCP IP-address-assignment protocol []. In that setting, leader election is used 
to choose the server that is currently responsible for managing a particular IP address. This appli
cation requires that the leader-election algorithm satisfy a kind of “mutual exclusion” property: it 
should never allow two processes to believe, at the same time, that they are the leader. 

The algorithm we describe uses a separate failure-detection service, which provides information 
to the processes about which processes are currently alive. In practice, the failure-detection service 
would itself be implemented using another distributed algorithm, using a strategy based on timeouts 
as in Section 6. However, we present it abstractly here, as a single global service automaton. 

The processes are assumed to have local clocks, which are reliable and increase at rate 1. Less 
synchronized clocks could also be used, with slight adjustments in bounds. We assume that, when 
a process recovers, it resumes its computation with all of its variable restored to their initial values. 
The only exception to this rule is the local clock, which we assume remains reliable. The processes 
use time for other purposes besides failure detection; in particular, a process must wait a specified 
amount of time after recovery before it can decide that it is the leader. 

This leader-election algorithm is a typical example of a distributed algorithm in which a col
lection of processes coordinate by using a shared service. It is atypical in that the processes do 
not communicate in any other way except through the shared service; usually, the processes would 
also communicate via point-to-point or broadcast channels. We could also model such channels 
as TIOAs. An example of such a channel—a reliable FIFO point-to-point channel—is given in 
Section 6. Many other kinds of channels could also be defined; see Section ?? in Part II for some 
others. 

7.1 The election processes 

We assume that the processes of the election algorithm are named by elements of a finite set J, 
which is declared in the vocabulary Processes in Figure 15. We assume that the set of process names 
is totally ordered, and we assume an explicit operator to return the minimum index in a given set. 

In our algorithm, the processes try to elect the process with the minimum name, among those 
that are currently alive. To determine who is alive, the processes use information that arrives from 
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vocabulary Processes 
types J 
operators min: Set[J] J→

end 

imports Processes 

automaton Elect(j:J, delta, e, u: Real) where delta > 0 ∧e > 0 ∧u > 0 

signature

input status(L: Set[J], const j), fail(const j), recover(const j)

internal elect(const j)

output leader(const j)


states

live:Set[J] : = {j};

elected: Bool : = false;

clock: Real : = 0;

last rectime: Real : = 0;

next announce: AugmentedReal : = ∞;


transitions

input status(L,j)


eff if j ∈ live then

live : = L;

if (j =� min(live)) then


elected : = false;

fi;


fi;


input fail(j) 
eff live : = ∅;


elected : = false;

last rectime : = 0;

next announce : = ∞;


input recover(j)

eff live : = {j};


last rectime : = clock;


internal elect(j) 
pre j ∈ live ∧j =min(live) ∧clock > last rectime + delta ∧¬elected; 
eff elected : = true; 

next announce : = clock; 

output leader(j)

pre elected =true;

eff next announce : = clock + u;


trajectories 
trajdef normal 

stop when j ∈ live ∧
((j =min(live) ∧clock ≥last rectime + delta + e ∧¬elected) ∨30 
clock =next announce);


evolve d(clock) =1;


Code Sample 15: Tempo description of a leader-election process 



the failure-detection service. When a process recovers, and also at the beginning of execution, it 
waits a certain amount of time—strictly more than delta—before electing itself as the leader. This 
strategy prevents more than one process from deciding that they are the leader at the same time. 

Automaton Elect has four parameters: its name j, which is of type J, and three reals, delta, e, 
and u, representing, respectively, the amount of time the process waits after recovery before it may 
elect itself the leader, a small positive constant used to bound when it must elect itself the leader, 
and an upper bound for announcements when it is the leader. 

The automaton has three kinds of input actions. The first, of the form status(L, j), are intended 
to be produced by the failure-detection service. The first parameter, L, indicates a set of processes, 
representing those that the failure detector claims are currently alive. The second parameter, j, is 
simply the name of the process itself. Since that name is already fixed for the particular process 
instance (as a formal parameter of the automaton), we write this here with the keyword const, as 
const j. The other two inputs are failure and recovery actions, also parameterized by const j. The 
automaton also has an internal action, elect(const j)’, by which it elects itself the leader, and an 
output action, announce(const j), by which it announces that it is the leader. 

The state of the Elect process automaton includes the variable live, which keeps track of the 
latest information the process has about who is alive. Initially, it sets live to record only that process 
j itself is alive. The next variable, elected, is a Boolean flag saying whether process j is currently 
elected as the leader. The variable clock is a real-time clock. The variable last rectime keeps track 
of the last time at which process j recovered from a failure (or the initial time, if this has never 
happened). Finally, next announce is a deadline variable that keeps track of when process j should 
next announce that it is the leader. 

A status(L,j) transition does nothing if process j is currently failed. Otherwise, if it is alive, it 
records the arriving set L in live. (We will assume a reliable, up-to-date, failure detection system, 
which implies that j itself will always be in the set L in this case.) Finally, if j is now not the 
minimum live process, process j sets elected to false. 

The fail transitions cause the non-clock variables to be reset to default values. The recover 
transitions cause process j to record that it is alive, and also to record the current time as the last 
recovery time. 

Process j may elect itself as leader at any point when it sees that its name is the minimum among 
the names of processes it believes to be alive, and when its clock is sufficiently greater than the last 
recovery time. The effect is simply to set the elected flag to true and to schedule an immediate leader 
announcement. Process j may announce that it is the leader at any point when it is the leader. 
The only effect is to reset the deadline for the next announcement to clock + u. This guarantees 
that, while it is the leader, it will announce this fact every so often. 

The trajectories allow the clock to advance at rate 1. Time is required to stop when j should 
elect itself the leader, or when it is time to announce that it is the leader. Note the use of the 
constant e used here in defining the deadline for election. This constant does not appear in the 
corresponding precondition for the elect action. However, that precondition uses a strict inequality, 
which would not make sense in a stopping condition. This is because there is no “first” time when 
the clock strictly exceeds last rectime + delta! 

7.2 The failure-detection service 

Tempo code for the failure-detection service appears in Figure 16. Many different kinds of fail
ure detectors have appeared in Distributed Algorithms research papers, varying according to the 
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strength of their accuracy and completeness guarantees. (See the discussion of accuracy and com
pleteness for the timeout system, in Section 6.) Here, we describe a failure detector with strong 
guarantees. Namely, it learns the true failure status of processes immediately, and correctly and 
frequently informs each process of the set of live processes. The parameter delta represents an upper 
bound on the time between status reports to each process. 

automaton FailureDetector(delta: Real) where delta > 0 
imports Processes 

signature

input fail(j: J), recover(j: J)

output status(L: Set[J], j: J)


states

live: Set[J] : = {j:J where true};

clock: Real : = 0;

next status: Array[J,Real] : = constant(0);


transitions 

input fail(j)

eff live : = live − {j};


input recover(j)

eff live : = live ∪{j};


output status(L, j) 
pre L =live; 
eff next status[j] : = clock + delta; 

trajectories 
trajdef normal 

stop when ∃j:J (next status[j] =clock); 
evolve d(clock) =1; 

Code Sample 16: Tempo description of the failure-detection service 

The signature includes input actions fail(j) and recover(j) for every j in J. Note that each such 
action is also an input action of the appropriate automaton Elect(j). When we compose the pieces, 
each of these input actions will be shared by two automata. The only other actions are the status(L,j) 
outputs, by which the failure detector informs process j that L is the current set of live processes. 

The automaton has a state variable live, which contains a set of processes, intended to be the 
set of all live processes. The presumption at the beginning is that all processes are alive, so live is 
initialized to the full set of processes. The automaton also has a real-time clock. Finally, it has 
an array next status of deadline variables. For each j, next status(j) keeps track of a deadline for the 
next time the failure detector should inform process j about the current failure status. 

The fail and recover transitions simply update the live variable appropriately. The status tran
sitions allow the failure detector to inform any process j about the (correct and current) failure 
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status, at any time. Their effect is simply to establish a new deadline for the next status update 
to process j. 

Finally, the trajectories allow time to pass normally, forcing time to stop when a deadline is 
reached. Thus, the status updates are allowed to happen at any time, with no lower bound on the 
time between successive updates. However, there is an upper bound on this time, expressed by the 
stopping condition. 

7.3 The complete leader-election system 

The complete leader-election system combines the Elect(j) automata for all j with the failure de
tector, as in Figure 17. The system takes three parameters, delta, e, and u, where the first has the 
same meaning as in the failure detector and the last two have the same meanings they do in Elect. 
The components are the Elect(j, delta, e, u) automata for every j in J, plus FailureDetector(delta). We 
assign these short names E[j] and FD by which we can refer to them within the composition. 

automaton LeaderSystem(delta,e,u: Real) where delta > 0 ∧e > 0 ∧u > 0 
components 

E[j:J]: Elect(j, delta, e, u); 
FD: FailureDetector(delta); 

hidden 
status(L,j); 

Code Sample 17: Tempo description of the leader-election system 

We also specify that the status actions are hidden; formally, we define a new TIOA that is the 
same as the specified composition except that the status output actions are reclassified as internal 
rather than output actions. This is useful if we want to regard the LeaderSystem as a black box, to 
be used as a piece of a larger system. In that case, the status actions should be regarded as internal, 
since they are probably not relevant to the correct behavior of the leader election subsystem, as 
seen by the rest of the system. 

What are the interesting properties of LeaderSystem? First, we would like to know that we don’t 
have two leaders elected at the same time. And second, we would like to know that, soon after 
any point when the underlying system stabilizes, in the sense that failures and recoveries stop, a 
leader is actually elected. The first of these two properties could be stated as an invariant, as in 
Figure 18. 

invariant of LeaderSystem: 
∀i: J ∀j: J


(i =� j ⇒¬(E[i].elected ∧E[j].elected));


Code Sample 18: Unique leader invariant 

Actually, this is probably not quite what we would like to say. We would like to know not 
just that two processes cannot be leaders at exactly the same time, but also that they cannot be 
leaders at times that are too close together. To see why, suppose we consider this leader-election 
algorithm as part of a larger distributed algorithm, in which a process j assumes that it can act 
as a leader if it has received a leader announcement “recently” from its local piece of the leader 

33




sub-algorithm. Suppose that, in the larger algorithm, two processes simultaneously assume they 
may act as leaders—a situation that we would like to avoid. Then it must be that, in the leader 
subalgorithm, the two processes were both recently considered to be leaders. That is, they were 
leaders at times that are close together, though not necessarily at exactly the same time. 

At any rate, the key to proving either version of this property is to suppose that two processes, 
j1 and j2, have elected =true simultaneously (or nearly simultaneously), and that j1 < j2. Then 
both processes must have been alive for a long time, which implies that j2 knows that j1 is alive. 
In that case, j2 would not classify itself as a leader, a contradiction. This argument can be turned 
into a formal proof using invariants and deadline variables, though a fair amount of work would be 
needed for that. 

The second property is easy to see informally, though again, a formal proof would require some 
work. 

7.4 Discussion 

The leader-election example illustrates how to model a simple, typical distributed algorithm in 
which a collection of processes interact using a shared service. In other distributed algorithms the 
processes might also interact using shared channels as described in Section 6. 

This example again illustrates the use of composition, and suggests how one might prove global 
properties of a composed automaton. 

8 Example 5: Dynamic Bellman-Ford Shortest-Paths Protocol 

The fifth example is intended to illustrate how to write a simple, fairly typical timing-based com
munication protocol using Tempo. The protocol we present is a dynamic version of the well-known 
Bellman-Ford shortest paths algorithm. 

In the dynamic Bellman-Ford protocol, processes are located at the vertices of an edge-weighted 
directed graph. One vertex is distinguished as the root vertex. Each process is supposed to maintain 
information about a minimum-weight (also known as the “shortest”) path from the root to itself. 
The specific information that the process keeps is the weight of the path plus its “parent” on the 
path. We assume that processes can fail and recover. Thus, minimum-weight paths may change 
over time, and the processes will need to adjust their information to accommodate these changes. 

Such an algorithm could be used to construct and maintain a structure (a shortest-paths tree) 
that would allow the root process to perform efficient global broadcasts. To use the algorithm in 
this way, the processes would have to carry out additional work to construct child pointers as well 
as parent pointers. 

8.1 The root process 

Data types related to directed graphs and weighted directed graphs appear in the vocabulary 
defined in Figure 19. Namely, we use type Index to represent the vertices, and we define an edge to 
be an ordered pair of indices, called the source and target respectively. A Graph is then simply a set 
of edges. A WeightedGraph is a pair consisting of a Graph and a weight mapping, which maps edges 
to natural numbers. 

Although we allow an Edge to be any pair of indices, we intend that a Graph should include only 
edges in which the source and target nodes are different. Properties such as these can be stated as 
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vocabulary Nodes 
types Index,


Edge : Tuple[source: Index, target: Index],

Graph : Set[Edge],

WeightedGraph: Tuple[G: Graph, weight: Map[Edge, Nat]],

Message : Tuple[weight : Nat, destination: Index]


operators 
createedge: Index, Index Edge,

root: Graph →Index, 

→


innbrs, outnbrs: Graph, Index Set[Index]
→

end 

Code Sample 19: Vocabulary for dynamic Bellman-Ford 

formal axioms, for example, ∀e ∈ G: Graph (e.source \neq e.target). Such axioms are not part of the 
standard Tempo language, however, but rather, are part of the input to the theorem-prover used 
with Tempo. 

We also require certain operators involving these types. For instance, createedge simply pro
duces an edge from a pair of indices. Also, root is a mapping that selects a distinguished root 
vertex for a given graph. And innbrs and outnbrs, respectively, yield the set of incoming and out
going neighbors of a given vertex of a given graph. Again, we would like some axioms to express 
properties of these data operators, for example, innbrs(G,j) ={ e.source |e ∈ G ∧e.target =j } and 
outnbrs(G,j) ={ e.target |e ∈ G ∧e.source =j }. 

Figure 20 contains the automaton for the root process. The parameter u represents the interval 
between successive times when the automaton sends information to all of its neighbors. 

The root automaton has inputs fail and restart, outputs send(m,i,j), and inputs receive(m,i,j). In 
the send outputs, m is always 0, because it represents the distance from the root to itself. The 
second parameter i of send and receive actions is the index of the root automaton itself, which is 
a parameter of the automaton definition, and so this is preceded here by the keyword const. The 
third parameter j is the index of an outgoing neighbor of the root. The automaton also has an 
internal action sendupdate, by which it assembles messages to send to its outgoing neighbors. 

The state contains a sendbuffer, which holds the messages to be sent to the outgoing neighbors, 
and a Boolean flag failed saying whether the node is currently failed. It also contains a real-time 
clock and a deadline variable next send giving a bound on when the next messages should be sent. 

A sendupdate may occur when the clock reaches the deadline next send. Its effect is to add, to 
sendbuffer, messages to all of its outgoing neighbors, and to reset the next send deadline. A send may 
occur whenever there is a message in the sendbuffer, and which point the message is removed. A 
receive input is simply ignored (since the root does not care about indirect paths to itself!). A fail 
results in setting the failed flag to true and setting the other variables (except for clock) to default 
values. A restart results is setting the failed flag to false and then setting next send to the current 
time. 

The trajectories allow time to pass at rate 1, stopping time when either the next send deadline 
variable says it is time to put new messages in the sendbuffer or when the sendbuffer contains any 
messages to be sent to the neighbors. Thus, messages placed in the sendbuffer by a sendupdate are 

35




imports Nodes 

automaton BellmanFordRoot(W: WeightedGraph, u: Real, i: Index) where u > 0 ∧i =root(W.G) 

signature

input fail, restart

output send(m: Nat, const i, j: Index) where m =0 ∧j ∈ outnbrs(W.G,i)

input receive(m: Nat, j: Index, const i) where j ∈ innbrs(W.G,i)

internal sendupdate


states 
failed: Bool : = false;

sendbuffer: Set[Message] : = ∅;

clock: Real : = 0;

next send: AugmentedReal : = 0;


transitions 

internal sendupdate 
pre clock =next send; 
eff sendbuffer : = sendbuffer ∪{m:Message where m.weight =0 ∧m.destination ∈ outnbrs(W.G,i)}; 

next send : = clock + u; 

output send(m, i, j)

pre [m,j] ∈ sendbuffer;

eff sendbuffer : = sendbuffer − {[m,j]};


input receive(m, i, j)

eff


input fail 
eff failed : = true;


sendbuffer : = ∅;

next send : = ∞;


input restart

eff failed : = false;


next send : = clock;


trajectories 

trajdef traj

stop when


clock =next send ∨sendbuffer =� ∅; 
evolve 

d(clock) =1;


Code Sample 20: Root process for dynamic Bellman-Ford
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sent immediately, before any further time passes. 

8.2 The non-root processes 

Code for the non-root processes appears in Figures 21 22. Here, parameter u is the interval for 
sending notifications to outgoing neighbors, b is an assumed upper bound on message delay, and e 
is a small “epsilon’ used for the timeout, as in the leader election example in Section 7. 

The signature includes fail, restart, send, receive, and sendupdate actions, as for the root automa
ton. In addition, we now have a new timeout internal action, which the automaton uses as a signal 
to remove old path information. 

The state variables include sendbuffer, failed, clock, and next send, as for the root. In addition, we 
now have state variables dist and parent, which keep track of path information, namely, a natural-
number distance estimate and a proposed parent on a minimum-weight path. Initially, dist and 
parent are nil, and next send is set to infty, because the automaton has no information to send. The 
automaton also has a timeout deadline variable, which keeps track of when any current information 
should be timed out. 

Nearly all of the interesting work of this automaton is done by the receive transitions: A 
receive(m,i,j) transition begins with a locals declaration, which defines and initializes a local variable 
w to the weight of the edge incoming from the originator of the message, j, to i. This variable is 
local to the given transition definition, and is not regarded as part of the automaton’s state. 

In the effects, process i does nothing if it is currently failed. Otherwise, it considers the in
coming information and decides whether it should accept it in preference to its current informa
tion. It accepts the new information in two situations: if it currently has no path information 
(dist =nil), or if the new information yields a strictly shorter distance than the current information 
(dist =� nil ∧(m + w < (Nat)dist)) In this second case, the process does not distinguish whether the 
new, shorter distance has arrived from the current parent or from a different incoming neighbor. 

If the process does decide to accept the new information, it resets its dist variable to the new, 
improved distance, and its parent variable to the originator of the message. It sets timeout deadline to 
an appropriate time in the future—calculated as u+b, the sum of the sending interval and an upper 
bound on the message delay. The idea here is that, if the current information remains correct, 
process i should receive it again within that amount of time. Also, if the process accepts the 
new information, it sends the new distance estimate to all of its neighbors (by putting the needed 
messages into sendbuffer), and resets its deadline variable for its next send, next send, to time u in 
the future. 

On the other hand, if the process decides not to accept the new information, if checks to see 
whether the message is in fact refreshing the path information that it previously had. In that case, 
it resets the timeout deadline to the appropriate future time. 

A timeout transition may occur anytime when the clock strictly exceeds the timeout deadline. 
When it occurs, all path information is discarded, and next send and timeout deadline are set to their 
default value, infty. 

A sendupdate transition may occur when clock =next send and dist =� nil. The effect is to put 
messages containing the current dist into the sendbuffer and reset the next send deadline so it can 
send again, time u later. 

You might think that the second clause of the precondition, dist =� nil, could be omitted since it 
could be proved from the first clause, clock =next send. However, this is not quite correct. The fact 
that the first clause implies the second could in fact be proved as an invariant of this automaton, 

37




imports Nodes 

automaton BellmanFordNonRoot(W: WeightedGraph, u:Real, b:Real, e: Real, i: Index) 
where u > 0 ∧b ≥0 ∧e > 0 ∧i =� root(W.G) 

signature

input fail, restart

output send(m: Nat, const i, j: Index) where j ∈ outnbrs(W.G,i)

input receive(m: Nat, j: Index, const i) where j ∈ innbrs(W.G,i)

internal sendupdate, timeout


states 
failed: Bool : = false;

sendbuffer: Set[Message] : = ∅;

dist: Null[Nat] : = nil;

parent: Null[Index] : = nil;

clock: Real : = 0;

next send: AugmentedReal : = ∞;

timeout deadline: AugmentedReal : = ∞;


transitions 

input receive(m, j, i)

locals


w:Nat : = W.weight[createedge(j,i)]; 
eff


if ¬failed then

if dist =nil ∨(dist =� nil ∧(m + w < (Nat)dist)) then 

dist : = embed(m + w); 
parent : = embed(j); 
timeout deadline : = clock + u + b; 
sendbuffer : = sendbuffer ∪{m:Message where m.weight = (Nat)dist ∧m.destination ∈

outnbrs(W.G,i)}; 
next send : = clock + u; 

else

if (parent =embed(j) ∧dist =embed(m+w)) then


timeout deadline : = clock + u + b;

fi;


fi;

fi;


internal timeout

pre timeout deadline =� ∞∧clock > timeout deadline;

eff dist : = nil;


parent : = nil;

next send : = ∞;

timeout deadline : = ∞;


Code Sample 21: Non-root process for dynamic Bellman-Ford 
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internal sendupdate 
pre clock =next send ∧dist =� nil; 
eff sendbuffer : = sendbuffer ∪{m:Message where m.weight =(Nat)dist ∧m.destination ∈

outnbrs(W.G,i)}; 
next send : = clock + u; 

output send(m, i, j)

pre [m,j] ∈ sendbuffer;

eff sendbuffer : = sendbuffer − {[m,j]};


input fail 
eff failed : = true;


sendbuffer : = ∅;

dist : = nil;

parent : = nil;

next send : = ∞;

timeout deadline : = ∞;


input restart

eff failed : = false;


trajectories 

trajdef traj

stop when


clock =next send ∨clock =timeout deadline + e ∨sendbuffer =� ∅; 
evolve 

d(clock) =1; 

Code Sample 22: Non-root process for dynamic Bellman-Ford, continued 
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once the automaton is defined. However, in defining the automaton, we need to make sure that 
all the transition definitions make sense on their own. In this sendupdate transition definition, 
we convert dist from type Null[Nat] to type Nat, which presupposes that dist =� nil. To avoid the 
circularity, we include the condition dist =� nil in the precondition. 

The send transitions are the same as for the root. The fail transitions are similar to those for 
the root, though now there are several more variable to set to default values. The restart transitions 
are exactly like those for the root. The trajectories allow time to pass until either a sending or 
timeout deadline is reached, or the sendbuffer is nonempty. 

8.3 The complete Bellman-Ford system 

The complete dynamic Bellman-Form algorithm is defined in Figure 23. The components are the 
root automaton, non-root automata for all the non-root indices, and timed channels connecting 
all of the neighboring indices in the graph. The channels we use here are essentially the same as 
TimedChannel from the timeout example, in Section 6. However, we need to modify TimedChannel 
slightly, to take two additional parameters representing the source and target vertices for the 
channel. 

What could one prove about the behavior of this protocol? It is difficult to say much about 
what is happening during times when the system is changing, while processes fail and recover. 
However, we can describe guarantees for stable situations, which arise when failures and recoveries 
stop for a while. For example, consider the special case case where failures and recoveries stop from 
some point on, and where the root is non-failed after that point. In this case, one can show that 
eventually, every live process that has a path from the root ends up with its dist and parent variables 
set to the weight and parent for some correct minimum-weight path from the root. Furthermore, 
the time for this to happen can be bounded in terms of the difference between the maximum correct 
distance and the minimum incorrect distance estimate. 

8.4 Discussion 

This example illustrates how to model a simple, typical communication protocol for wired networks 
using Tempo. Other communication protocols for wired networks can be modeled similarly. 

To model algorithms for wireless networks, we can again use process and channel automata. 
The processes are similar to those in a wired network, but now the channels are broadcast channels. 
Complications arise in describing characteristics of the broadcast channels, such as message losses 
and collisions and limited broadcast range. In order to describe these characteristics, the channel 
model needs information about the physical locations of the processes. 

Mobility introduces additional complications: If the components are mobile, the channel model 
must maintain the location information so that it is relatively up-to-date. 

9 Example 6: One-Shot Vehicle Controller 

Our final example is intended for people interested in modeling and analyzing hybrid (continu
ous/discrete) systems, for example, systems in which real-world entities such as robots or vehicles 
are controlled by computer programs. Our example consists of only two components, a train, and a 
controller that may apply a brake to slow the train down. The train moves according to Newtonian 
laws of motion, with different accelerations based on whether its brake is currently being applied. 
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vocabulary TimedChannel2Types(M: Type) 
types Packet : Tuple[message: M, deadline: Real] 

end 

types Index 

automaton TimedChannel2(b: Real, i,j: Index, M: type) where b ≥0 
imports TimedChannel2Types(M) 

signature

input send(m:M, i,j: Index)

output receive(m:M, i,j: Index)


states

queue: Seq[Packet] : = ∅;

now: Real : = 0;


transitions

input send(m,i,j)


eff queue : = queue �[m,now+b];

output receive(m,i,j)


pre queue =� ∅∧head(queue).message =m;

eff queue : = tail(queue);


trajectories 
trajdef traj


stop when ∃p: Packet (p ∈ queue ∧now =p.deadline);

evolve d(now) =1;


automaton BFSystem(W: WeightedGraph, u, b, e: Real) 
where u > 0 ∧b ≥0 ∧e > 0 
components 

BRoot: BellmanFordRoot(W, u, root(W.G));

BNR[j: Index]: BellmanFordNonRoot(W, u, b, e, j) where j =� root(W.G);

TC[i,j: Index]: TimedChannel2(b,i,j,Nat) where createedge(i,j) ∈ W.G;


Code Sample 23: Complete dynamic Bellman-Ford system 
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While the brake is being applied, the train decelerates, following some negative acceleration in a 
known range [amin,amax]. While the brake is not being applied, the train continues at a steady 
speed. 

This example is derived from one in H. B. Weinberg’s M.S. thesis [10] and in the related 
paper [11]. The example illustrates how to model a combination of real-world and computer com
ponents. In fact, it is essentially the first example we are presenting that allows interesting state 
evolution between discrete events, that is, during trajectories. (We did briefly consider, in Sec
tions 6 and 7, local clocks that progress during trajectories at rates that are approximately that 
of real time.) 

9.1 The train 

We model the train by a TIOA called Train, described in Figure 24. Train has a parameter v0, 
which represents its initial velocity. This velocity must be positive, indicating that the train is 
moving in the positive direction (left to right). We assume that the train starts at position 0 on the 
track. Train has two other parameters, amin and amax, which represent the minimum and maximum 
acceleration allowed while the train is braking. Both of these are negative reals, which indicates 
that the train actually decelerates when the brake is applied. 

The only discrete actions are two inputs, brakeOn and brakeOff, which represent engagement and 
disengagement of the brake, respectively. The state variables include real values x, v, and a, which 
represent the current position, velocity, and acceleration of the train. The state also includes a 
Boolean flag b that says whether the brake is currently engaged or not; initially it is not. Finally, 
we have a real-time clock now. 

There are two types of transitions. A brakeOn transition simply sets the brake flag to true and 
sets the acceleration to be any value between amin and amax. Similarly, a brakeOff transition sets 
the flag to false and sets the acceleration to be 0. 

The automaton has two kinds of trajectories. The first kind, called On trajectories, capture 
the behavior of the train while the brake is on. During such a period, the acceleration is allowed 
to change, though it always remains between the specified minimum and maximum acceleration 
bounds; this limitation is expressed by an invariant clause. Besides remaining between these 
bounds, a is constrained to observe its dynamic type, which is the set of piecewise continuous real-
valued functions. The velocity evolves in the usual way, with its derivative equal to the acceleration, 
and similarly, the position’s derivative is equal to the velocity. That is, the velocity is derived from 
the acceleration, and the position is derived from the velocity, by integrating. Finally, now evolves 
at rate 1. 

The second kind of trajectories are called Off trajectories, and they capture the behavior of the 
train while the brake is off. During such a period, the acceleration remains at 0; the velocity and 
position are expressed in terms of the acceleration as in the On trajectories. As usual, now evolves 
at rate 1. 

As we noted above, this is the first example we are presenting that includes interesting state 
evolution during trajectories. Interesting state evolution is typical of hybrid system examples, since 
they generally include real-world components whose behavior is subject to quantifiable physical 
laws. Distributed algorithms and communication protocol examples, on the other hand, usually 
have rather simple state evolution. The most complicated type of evolution that we typically see 
in those examples is for local clocks, which may drift slightly as time passes, at a rate that may 
be constrained to remain within some known bounds. One type of communication setting that 

42




automaton Train(v0, amin, amax: Real) where v0 > 0 ∧amin ≤amax ∧amax < 0 

signature

input brakeOn, brakeOff


states 
x: Real : = 0; 
v: Real : = v0; 
a: Real : = 0; 
b: Bool : = false;

now: Real : = 0;


transitions

input brakeOn


eff b : = true;

a : = choose k where amin ≤k ∧k ≤amax; 

input brakeOff

eff b : = false;


a : = 0; 

trajectories

trajdef On


invariant

b ∧amin ≤a ∧a ≤amax; 

evolve d(v) =a; 
d(x) =v; 
d(now) =1; 

trajdef Off

invariant b ∧a =0;
¬
evolve d(v) =a;


d(x) =v;

d(now) =1;


Code Sample 24: The train 
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does have interesting state evolution is mobile wireless communication: complete models for such 
systems must take into account physical motion of the mobile devices. 

9.2 The controller 

In contrast to the real-world model, the controller is generally a discrete component, like the 
algorithmic components we have already been considering. In this case, we model a specific kind 
of controller—one that engages the brake just once and then disengages it once. Code for the 
controller appears in Figure 25 

The given vocabulary defines a simple type Phase, defined as an enumeration of three phase 
values. The automaton has phase =idle before it has applied the brake, phase =braking while the 
brake is on, and phase =done after it has stopped braking. 

The automaton is called Oneshot, because it engages and disengages the brake exactly once. 
The times at which it performs these two events are determined by parameters A, B, and C. In 
particular, A indicates the latest time when the brake might be applied, and B and C indicate the 
earliest and latest times, respectively, by which the brake might be disengaged. The only discrete 
actions are the outputs brakeOn and brakeOff. 

The state contains a variable phase, which keeps track of the current controller phase; initially 
this is idle. Other variable keep track of the current time, a deadline for when the brake can be 
applied (initialized at A), and an earliest time and a deadline for when the brake can be disengaged. 

A brakeOn transition is allowed to happen when phase =idle. Its effect is to reset phase to braking 
and to set the earliest-time and deadline variables for disengaging the brake (to B and C in the 
future, respectively). A brakeOff transition may happen when phase =braking and when the earliest-
time constraint is satisfied, that is, when the current time is greater than or equal to the earliest 
time allowed for braking. The effect is to reset phase to done. 

The controller has three kinds of trajectories, corresponding to the three phases. The idle 
trajectories must stop when time reaches the last on deadline for braking, and the braking trajectories 
must stop when time reaches the last off deadline for disengaging the brake. 

9.3 The controlled train system 

Now we combine the train and controller into a controlled system, OneshotSys, whose code appears 
in Figure 26. The system has six real-valued parameters. As in the Train automaton, v0 indicates 
the train’s initial velocity, and amin and amax indicate bounds on the acceleration. Parameter xt 
represents a target (destination) point on the track. Parameters vtmin and vtmax indicate lower 
and upper bounds on velocity; we assume that system is supposed to ensure that, if the train ever 
reaches the target point xt, then its velocity will be between vtmin and vtmax. 

The main interesting part of the specification is the instantiation of the three parameters, A, B, 
and C, of the controller OneShot. These values are calculated specifically to ensure that the train’s 
velocity indeed reaches the desired range by the time the train reaches the desired position xt. 

The first parameter of OneShot represents the latest time at which the controller should engage 
the brake. The subtracted term within the brackets represents the remaining distance needed to be 
sure that the train can slow down from its initial velocity of v0 to the maximum permissible velocity 
vtmax. We require (in the composed system’s where clause) that this distance is in fact no greater 
than the available distance xt. The result of the subtraction represents the maximum distance 
that the train may travel while still allowing enough time to slow down sufficiently. Dividing 
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vocabulary Oneshot types 
types Phase: Enumeration [idle, braking, done] 

end 

automaton Oneshot(A, B, C: Real) 
imports Oneshot types 

signature

output brakeOn, brakeOff


states 
phase: Phase : = idle;

now: Real : = 0;

last on: Real : = A;

first off: DiscreteReal : = 0;

last off: AugmentedReal : = ∞;


transitions 
output brakeOn 

pre phase =idle; 
eff phase : = braking; 

first off : = now + B; 
last off : = now + C; 

output brakeOff 
pre phase =braking ∧first off ≤now; 
eff phase : = done; 

trajectories 
trajdef idle 

invariant phase =idle; 
stop when now =last on; 
evolve d(now) =1; 

trajdef braking 
invariant phase =braking; 
stop when now =last off; 
evolve d(now) =1; 

trajdef done 
invariant phase =done; 
evolve d(now) =1; 

Code Sample 25: The controller 
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automaton OneshotSys(v0, xt, vtmin, vtmax, amin, amax: Real) 
where v0 > 0 ∧amin ≤amax ∧amax < 0 ∧0 ≤xt ∧

0 ≤vtmin ∧vtmin ≤vtmax ∧vtmax ≤v0 ∧
xt ≥(vtmax ∗ vtmax − v0 ∗ v0) / (2 ∗ amax) 

components 
Train: Train(v0, amin, amax); 
Controller: Oneshot(1/v0 ∗ (xt − (vtmax ∗ vtmax − v0 ∗ v0) / (2 ∗ amax)), 

(vtmax − v0)/amax, 
(vtmin − v0)/amin); 

Code Sample 26: The controlled system 

by v0 translates this maximum distance to the maximum time before braking. The second and 
third parameters represent the minimum and maximum amounts of braking time that are safe for 
ensuring that the velocity ends up in the allowed range. In reading these various bounds, recall 
that amax and amin are negative reals, and vtmax and vtmin are less than are equal to the initial 
velocity v0; thus, many of the quantities in these expressions are negative. 

The main property to be proved may be written as the invariant x =xt ⇒vtmin ≤v ∧v ≤vtmax. 

9.4 Discussion 

This example illustrates how to model a simple control system, consisting of a software controller 
component interacting with a real-world vehicle component. Although this example is simple, it 
should give you a good idea of how to model other kinds of control systems, for example, robot 
control systems, air-traffic control systems, or factory control systems. The main difference among 
these is that the real-world portions of these systems involve other kinds of physical dynamics, 
which means that trajectories are described using different kinds of equations. 

Another difference is that some of these systems involve distributed controllers. For example, 
an air-traffic control system may be implemented by separate controllers running on computers on 
board the aircraft. In this case, we would probably choose to model these controllers as separate 
TIOAs. In the air-traffic example, the physical system also consists of separate components (the 
physical aircraft). However, in this case, we would probably not choose to model the aircraft as 
separate automata, since we might want to talk about relationships (e.g., minimum separation 
distance) among the various aircraft. Such relationships are most easily described using a single 
“Aircraft” automaton. 

Some control systems also include human components. For example, an aircraft collision-
avoidance system might consist of physical aircraft, on-board controller software, a communication 
system connecting the controllers, and the pilots of the aircraft. Such controller software may play 
an advisory role, communicating recommended actions to the pilots, who make the final decisions. 
In such a case, we can model all the system components, including the human pilots, as TIOAs. We 
can model the expected behavior of the pilots formally, along with that of the other components. 
In this way, we can use a TIOA model to analyze the behavior of the entire aircraft control system, 
including human participants. 

Other kinds of hybrid systems that could be modeled using Tempo include systems of biological 
cells, such as a heart muscle composed of interacting heart cells. However, note that Tempo 
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(and TIOA) are restricted to allow only discrete interaction among components; if we want to 
capture continuous interaction, we would have to use a more general model such as Hybrid I/O 
Automata [5, 8]. 
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Part II 

TIOA User Guide 

10 User Guide Introduction 

In Part I, we presented an example-based tutorial on the use of the Tempo language. Here, in Part 
II, we give a more systematic, though still informal, description of the language constructs. More 
formal descriptions of Tempo syntax and semantics appear in the reference manual, in Part III. 

The longest section of this user guide, Section 11, describes the Tempo language constructs 
that are used to define Timed I/O Automata (TIOAs). Section 12 describes facilities for applying 
composition and hiding operations to TIOAs. Section 13 shows how to define invariant assertions 
and simulation relations within Tempo, both of which are useful in explaining the behavior of 
algorithms and in proving their correctness. Finally, Section 14 describes the use of data types in 
Tempo, including a catalog of primitive data types and type constructors. 

11 Timed I/O Automata 

This section contains descriptions of the Tempo language constructs that are used to define Timed 
I/O Automata (TIOAs). These include automaton names and parameters, action signatures, state 
variables, transitions, and trajectories. We begin with a review of the mathematical definition of a 
Timed I/O Automaton. 

11.1 Mathematical definition of Timed I/O Automata 

Mathematically, a Timed Input/Output (I/O) Automaton (TIOA) A is a tuple with the following 
elements: 

•	 A set X of variables, each of which has a static type and a dynamic type. The static type 
describes the values that the variable may take on whereas the dynamic type describes the 
allowable ways in which a variable may evolve over time. For example, a variable may have 
Real as its static type and the piecewise continuous functions from time intervals to Reals as 
its dynamic type. 

•	 A set Q of states, which is a subset of the set of all possible valuations of X (a valuation is a 
function f that assigns to each variable x in X a value f(x) in the static type of x). 

•	 A set Θ of initial states, which is a non-empty subset of Q. 

•	 A triple A, consisting of three disjoint sets I, O, and H of discrete input, output, and internal 
(hidden) actions, 

•	 A transition relation D, which is a subset of Q × A × Q. We say that an action a is enabled 
in a state q if there exits a transition of the form (q, a, q�) in D. 

•	 A set T of trajectories for X, which is a set of functions from intervals of time starting with 
0 to valuations in Q. 
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An action of an automaton is called external if it is an input or output action, and locally-
controlled if it is an output or internal action. A TIOA must satisfy the following two axioms: 

•	 Input action enabling: Every input action is enabled in every state. 

•	 Time-passage enabling: From every state time can advance either indefinitely, or for a finite 
interval at the end of which a locally-controlled action is enabled. 

There are also axioms that must be satisfied by dynamic types and trajectories. These axioms 
capture some natural requirements such as the fact that a prefix or suffix of a trajectory must be 
a valid trajectory. For a complete and formal definition of a TIOA the reader is referred to [2]. 

Executions and traces An execution fragment of a TIOA is a finite or infinite sequence τ0a1τ1a2 . . . 
of alternating trajectories and actions such that, if τi is not the last trajectory in the sequence, 
then its domain is a closed interval [0, ti] of time and there exists a discrete transition from the last 
state of τi to the first state of τi+1. An execution is an execution fragment such that the first state 
of τ0 is an initial state. A state is reachable if it occurs in some execution. 

The external behavior of an automaton is captured by the set of “traces” of its executions. The 
trace of an execution is a sequence that contains only the external actions and the amount of time 
passage during each trajectory. Formally, the amount of time passage during a trajectory is the 
projection of a trajectory onto an empty set of variables. 

A property that is true for all reachable states of an automaton is called an invariant assertion 
or invariant for short. 

The Tempo language provides notations for defining TIOAs either as primitive automata by 
specifying their names, signatures, state variables, transition relations, and trajectories, or as com
posite automata by specifying how they can be constructed from simpler TIOAs. The following 
subsections describe the notations for specifying primitive automata, and their relation to the 
mathematical model of TIOAs. Section 12 describes notations for composite automata. 

11.2 Automaton names and parameters 

The first line of an automaton description in Tempo consists of the keyword automaton followed 
by the name of the automaton. The name may be followed by a list of formal parameters enclosed 
within parentheses. For example, the automaton Clock (Code Sample 27) has no formal parameters, 
and the TimedChannel automaton (Code Sample 28 has two parameters: r, which represents the 
maximum delay for a message in the channel and M, which represents the type of message that can 
be communicated by the channel. 

Just to provide some intuition, we describe what the Clock automaton does. It keeps track of 
the nextHour and nextMinute. which represent the next time that it will display. Initially, this next 
time is set to 12:00, and it can be reset by an external user at any time, to any legal hour and 
minute. The Clock displays the next time, via a show output, at time zero, and also immediately 
after a reset. Immediately after the Clock displays the new time, it increments its recorded next 
time, waits one minute, and (unless a new reset occurs) displays the new time. The TimedChannel 
automaton was also used in Part I, in Section 6.1; you can look there for an informal description 
of its behavior. 

There are two kinds of automaton parameters. An individual parameter, such as r: Real, consists 
of an identifier and an associated type, and it denotes an element of that type. A type parameter, 
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let legalTime(hour, minute): Nat, Nat →Bool =minute < 60 ∧0 < hour ∧hour < 13; 

automaton Clock 

signature

output show(hour, minute: Nat) where legalTime(hour, minute)

input set(hour, minute: Nat) where legalTime(hour, minute)


states 
now: Real : = 0;

nextHour: Nat : = 12;

nextMinute: Nat : = 0;

timeToShow: DiscreteReal : = 0;


transitions 

input set(hour, minute) 
eff nextHour : = hour;


nextMinute : = minute;

timeToShow : = now;


output show(hour, minute)

pre hour =nextHour ∧minute =nextMinute ∧now =timeToShow;

eff nextMinute : = mod(minute + 1, 60);


if nextMinute =0 then nextHour : = mod(hour + 1, 12); fi; 
timeToShow : = now + 1; 

trajectories 

trajdef timePassage

stop when now =timeToShow;

evolve d(now) =1;


Code Sample 27: Clock component 
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vocabulary Message(M: Type) 
types 

Packet : Tuple[message: M, deadline: Real] 
end 

automaton TimedChannel(b: Real, M: Type) where b ≥0 
imports Message(M) 

signature

input send(m:M)

output receive(m:M)


states

queue: Seq[Packet] : = ∅;

now: Real : = 0;


transitions 

input send(m) 
eff queue : = queue �[m,now+b]; 

output receive(m) 
pre queue =� ∅∧head(queue).message =m; 
eff queue : = tail(queue); 

trajectories 
trajdef traj 

stop when ∃p: Packet (p ∈ queue ∧now =p.deadline); 
evolve d(now) =1; 

Code Sample 28: Time bounded FIFO communication channel 
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such as M: type, consists of an identifier followed by the keyword Type, and it denotes a type. Type 
parameters allow the specification of polymorphic automata. A type parameter such as M can be 
instantiated by importing a vocabulary at the very beginning of an automaton (see 14.5). The 
types and operators from a vocabulary can then be used in defining variables, actions, transitions, 
and trajectories. 

An automaton can contain a clause that constrains the values of its individual parameters. For 
example, an automaton whose definition begins with 

automaton Swap(A, B: Set[Int]) where A ⊂ B 

is parameterized by two sets of integers, the first of which must be a proper subset of the second. 

11.3 Action signatures 

The signature for an automaton is declared using the keyword signature followed by lists of entries 
describing the automaton’s input, internal, and output actions. Each entry contains a name and an 
optional list of parameters enclosed in parentheses. Varying parameters (such as hour, minute: Nat 
in Code Sample 27) consist of identifiers with associated types, and they denote arbitrary elements 
of those types. A fixed parameter (such as const i or const j in Code Sample 29) consists of the 
keyword const followed by a term denoting a fixed element of its type. Fixed parameters turn out 
to be necessary when we want to name actions based on automaton parameters. Neither kind of 
parameter can have Type as its type. 

automaton IndexedChannel(i, j: Nat, M: Type) 

signature

input send(const i, const j, m: M)

output receive(const i, const j, m: M)


states

buffer: Seq[M] : = ∅;


transitions 

input send(i, j, m)

eff buffer : = buffer �m;


output receive(i, j, m)

pre buffer � =head(buffer);
=∅∧m 
eff buffer : = tail(buffer);


Code Sample 29: Indexed communication channel


Each entry in the signature denotes a set of actions, one for each assignment of values to its 
varying parameters. Thus, IndexedChannel has one input action send(i, j, m) for each value of its 
parameter m; the values of i and j in these actions are fixed by their values as parameters of 
the automaton. Hence, the automaton IndexedChannel(1,2,String) (the specification of an indexed 
channel between parties 1 and 2), does not have, for example, an action send(3, 4, Hello). All send 
actions are of the form (1, 2, s) where s is of type String. 
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It is possible to constrain the values of the varying parameters for an entry in the signature 
using the keyword where followed by a predicate. These predicates are arbitrary first-order boolean 
predicates that may involve formal parameters of the associated action and formal parameters of 
the automaton (see ??). For example, the where clauses in Code Sample 27 constrain the values of 
the parameters hour and minute. Thus, the set of output actions for the Clock automaton contains 
one action show(hour, minute) for each pair of values of its parameters that satisfy the predicate 
legalTime(hour, minute). 

11.4 State variables 

As in the examples, state variables are declared in Tempo using the keyword states followed by a 
semicolon-terminated list of state variables and their static types. 

11.4.1 Initial values 

The initial values of state variables can be constrained using two methods. First, each individual 
variable can be initialized using the assignment operator followed by an expression that may refer 
to automaton parameters but not to other state variables. Note that the expression here may be a 
nondeterministic choice over a set. 

For example, in the Clock automaton (Code Sample 27), the initial values of the state variables 
now, nextMinute, and timeToShow are all 0, and the initial value of nextHour is 12. Hence, there is a 
single initial state for this automaton. If, for example, the assignment timeToShow : =0 were omitted 
from the declaration of the state variable timeToShow in the Clock automaton (Code Sample 27), 
then it would have an infinite number of initial states, one for each real number. In this case, the 
clock would not be able to display anything until either a set action occurs or until the value of 
now has reached timeToShow. 

The initial value of timeToShow can be constrained to ensure an upper bound on the amount of 
time we might need to wait until the clock displays something, for example: 

timeToShow: DiscreteReal : =choose r where 0≤r≤10 
When such a nondeterministic choose clause is used to initialize a state variable, we intend that 

at least one value of the variable should satisfy the predicate following the where clause. If the 
predicate is true for all values of the variable, then the meaning is the same as if no initial value 
had been specified for the state variable. 

It is also possible to constrain the initial values of all state variables taken together, whether 
or not initial values are assigned to any individual state variable. This can be done using the 
keyword initially followed by a predicate (involving state variables and automaton parameters). 
For example, we can allow the clock to display an arbitrary legal time of day as soon as it is turned 
on by constraining now and timeToShow to have the same unspecified value: 

states 
now: Real; nextHour: Nat; nextMinute: Nat; timeToShow : DiscreteReal; 
initially now =timeToShow 

Note that initially predicates are allowed to contain variables whose initial values are assigned 
nondeterministically, via choose expressions. Thus, we may write: 

states

xcoord: Real : = choose x where x ≥ 0;

ycoord: Real : = choose y where y ≥ 0;
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initially x + y =4 

In this case, we intend that at least one valuation of the set of variables should satisfy the initially 
predicate, as well as all of the where predicates. 

The order in which state variables are declared makes no difference: they are initialized simul
taneously. 

11.4.2 Types 

The static type of a variable is declared explicitly as we have seen above. The dynamic type, on 
the other hand, is implicit and inferred automatically from the static type. 

In Tempo, variables are classified as discrete or analog with respect to their dynamic types. 
Suppose that v is a variable of static type s(v). We say that v is a discrete variable if its dynamic 
type consists of piecewise constant functions from time intervals to s(v), and analog if s(v) is Real 
and its dynamic type consists of piecewise continuous functions from time intervals to Reals. For 
a formal definition of discrete and analog variables see [2]. 

More strongly, in Tempo, we require that the values of discrete variables can change only 
through discrete transitions and remain constant as time passes between discrete transitions. And 
we assume that analog variables evolve continuously as time passes. 

All variables that are of simple built-in types other than Real are assumed to be discrete and 
variables of type Real are assumed to be analog. It is also possible to define discrete real variables, 
by qualifying the static type name with the keyword Discrete; more precisely, we write the type as 
DiscreteReal. We discuss how to infer the dynamic type for compound static types that are built by 
type constructors in Section ??, where we present data types of Tempo in detail. 

11.5 Transition relations 

Transitions for the actions in an automaton’s signature are defined following the keyword transitions. 
A transition definition consists of 

•	 an action kind (input, output, or internal), 

•	 an action name with optional formal parameters and an optional where clause constraining 
the values of the parameters (see Section 11.5.1), 

•	 an optional local variables list (see Section 11.5.2), 

•	 an optional function definitions list (see Section 11.7), 

•	 an optional precondition (see Section 11.5.3), and 

•	 an optional effect (see Section 11.5.4). 

More than one transition definition can be given for a parameterized action. In such cases, where 
clauses can be used to partition the set of transition definitions according to predicates on formal 
parameters. The predicates associated with the where clauses are not required to be disjoint 
although in most common usages they are.2 

2In a tool that involve the execution of an automaton such as a simulator, it turns out to be practical to require 
that the where clauses for different transition definitions for the same action be disjoint. 

54 



automaton Temp 
signature 

input read(i:Nat) 

states

temp: Enumeration[low,medium,high];

degree: Int : = 0;


transitions 

input read(i) where i > 60

eff temp : = high;


degree : = i;


input read(60)

eff temp : = medium;


degree : = 60;


input read(i) where i < 60

eff temp : = low;


degree : = i;


Code Sample 30: Tempo description of a temperature reader 

The automaton Temp in Code Sample 30 has multiple transition definitions for the input action 
read(i) with disjoint where clauses. The definitions, respectively, describe the effects of reading a 
temperature greater than 60, exactly 60, and less than 60. 

11.5.1 Transition parameters 

The parameters that follow an action name in a transition definition must match those that follow 
the action name in the automaton’s signature, both in number and in type. The simplest way to 
formulate parameters for a transition definition is to erase the keyword const and the type modifiers 
from the parameters given for the action in the automaton’s signature; thus, in Code Sample 29, 
the parameters of the send action are given as (const i, const j, m: M) in the signature, but are 
shortened to (i, j, m) in the transition definition. 

Action parameters and transition parameters differ slightly. Parameters in the action signature 
can be terms (identified by the keyword const) that denote fixed values or they can be (declarations 
for) variables. All parameters in transition definitions are variable identifiers or constants and the 
keyword const cannot appear. For example, the parameter in read(60) in Temp denotes a fixed 
value. If a transition definition contains other variables (such as i in read(i)), these variables can 
have arbitrary values. 

11.5.2 Local variables 

A transition definition may contain additional local variables, which are declared after the action 
name and transition parameters, and before the precondition. The syntax for listing and initializing 
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local variables follows the same rules as for state variables. except that a local variable list is 
identified by the keyword locals. 

Local variables serve two purposes. First, they can be constrained by a transition’s precondition 
and used in the effects, as in the following automaton, PitchTwo: 

automaton PitchTwo(s: Set[Nat]) 
signature 

output pitch(n: Nat) 
states 

left: Set[Nat] : = s; 
transitions 

output pitch(n)

locals x : Nat;

pre n ∈ left ∧x ∈ left ∧n < x;

eff left : = delete(n, delete(x, left));


PitchTwo discards two numbers at a time from a set, but communicates only the smaller of the 
two when a transition occurs. When the effects clause in a transition definition does not assign 
any values to a local variable, as is the case here, the definition can be rewritten using explicit 
quantification instead of local variables, as in: 

transitions 
output pitch(n)


pre n ∈ left ∧∃x : Nat (x ∈ left ∧n < x);

eff left : = choose s where ∃x : Nat (x ∈ left ∧n < x ∧


s =delete(n, delete(x, left))); 

In general, to eliminate local variables to which no values are assigned, one quantifies them explicitly 
in the precondition for the transition, and then repeats the quantified precondition as part of the 
effects clause. 

A second use for local variables of transition definitions is as temporary variables in the effects 
clause, as in the following definition of an automaton that sorts an array into ascending order by 
swapping pairs of incorrectly ordered elements. 

automaton Arrange

signature


output swap(i, j: Nat)

states


A: Array[Nat, Nat];

transitions


output swap(i, j: Nat)

locals temp: Nat;

pre A[i] < A[j];

eff temp : = A[i]; A[i] : = A[j]; A[j] : = temp;


11.5.3 Preconditions 

The precondition in a transition definition is a predicate (that is, a boolean-valued expression) on 
the state variables, automaton parameters, action parameters, and local variables, indicating the 
conditions under which the transition can occur. In Tempo, preconditions can be defined for transi
tions of output or internal actions using the keyword pre followed by one or more predicates (with a 
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semicolon-terminated list). If no precondition is present, it is assumed to be true. If a precondition 
contains more than one predicate, it is equivalent to the conjunction of those predicates. Thus, for 
example, the transition of PitchTwo could be rewritten equivalently as: 

output pitch(n)

locals x : Nat;

pre n ∈ left;


x ∈ left;

n < x;


eff left : = delete(n, delete(x, left));


Mathematically, an action π is said to be enabled in a state s if there is a state s� such that 
the triple (s, π, s�) is in the transition relation of the automaton. Since input actions are enabled 
in every state; i.e., automata are not able to “block” input actions from occurring, transitions of 
input actions cannot have preconditions. 

11.5.4 Effects 

The effects clause in a transition definition describes the changes that occur as a result of the action. 
The clause can be written either in the form of a simple imperative program or as a predicate relating 
the pre-state and the post-state (i.e., the states before and after the action occurs). However a 
transition is defined, it always happens instantaneously and indivisibly. By “instantanously”, we 
mean that a transition takes no real time; the automaton state changes from s to s� by performing 
an action at a particular moment in time. By “indivisibly”, we mean that transitions happen one 
at a time, with the effects of each transition being completed before another transition begins. In 
fact, even more is true: the combination of precondition and effects of each transition should be 
atomic. That is, the precondition of a transition should evaluate to ”true” and then the entire 
effects part is executed, before the next transition begins. 

In Tempo, the effect of a transition is defined following the keyword eff, using a (possibly 
nondeterministic) program that assigns new values to state variables. Tempo assumes that state 
variables do not change during a transition unless they are assigned to during the execution of the 
effects program. In particular, if a transition definition has no effects program. then it leaves the 
state unchanged. The amount of nondeterminism in a transition can also be limited by a predicate 
relating the values of state variables in the post-state to each other and to their values in the 
pre-state. 

Using programs to specify effects A program is a semicolon-terminated list of statements. 
Statements in a program are executed sequentially and the computation of the whole program 
constitutes an atomic step.3 There are three kinds of statements: 

• assignment statements, 

• conditional statements, and 

for statements. • 
3The fact that the effects of the transition happen atomically does not mean that the left-hand sides of all 

assignments use values from the pre-state. The effects code should be executed like ordinary sequential code, one 
statement after another, so each statement’s left-hand side can use results of previous assignments. 

57 



Assignment statements: An assignment statement changes the value of a state variable or local 
variable. The statement consists of a state variable or local variable followed by the assignment 
operator : = and an expression. When a state variable is an array (see Section 14.3.1) or a tuple 
(see Section ??), then terms denoting its elements or its fields can also appear on the left-hand side 
(lhs) of the assignment operator, as in the automaton Arrange (see page 56). 

The expression following the assignment operator must have the same type as the variable on 
the lhs of the assignment operator. The value of this expression is determined in the state in which 
the assignment statement is executed, and it becomes the value of the variable on the lhs in the 
subsequent state. Execution of an assignment statement does not have side effects; i.e., it does not 
change the value of any state variable or local variable other than the one on the left side of the 
assignment operator. 

As illustrated in the discussion of the automaton PitchTwo (see page 57), the expression on the 
right side of an assignment statement can consist of a nondeterministic choose clause. The value 
of such a clause is constrained by a predicate following the keyword where. If the choose clause 
does not contain the keyword where (as in the statement x : =choose), then it is treated as if it 
contained where true, and it produces an arbitrary new value of the type of the lhs variable. 

Conditional statements: A conditional statement selects one of several program segments to 
execute in a larger program. Each conditional statement starts with the keyword if followed by a 
predicate and a then clause. The then clause contains a program segment that is executed if the 
predicate is true. Each conditional statement ends with the keyword fi. As illustrated by 

if x < y then x : = x + y fi; 
if x < y then x : = x + y else y : = x + y; x : = x + y fi; 
if x < y then x : = x + y elseif y < x then y : = x + y fi; 
if x < y then x : = x + y elseif y < x then y : = x + y else y : = x fi; 
if x < y then x : = x + y elseif y < x then y : = x + y elseif (x + y) < z then y : = x fi; 

a conditional statement can contain any number of elseif clauses (each of which contains a predicate 
and a then clause) and/or a final else clause, which also contains a program segment. The effect of 
executing a conditional statement is that of executing the program segment in the first then clause, 
if any, for which the preceding predicate is true and otherwise is that of executing the program 
segment in the else clause, if one exists. 

For statements: A for statement executes a program segment once for each value of a variable 
that satisfies a given condition. It starts with the keyword for followed by a variable, a clause 
describing a set of values for this variable, a do clause that contains a program segment, and the 
keyword od. 

Code Sample 31 illustrates the use of a for statement in a high-level description of a multicast 
protocol that has no timing constraints. The figure begins with the definition of a vocabulary (i.e., 
a set of symbols) that can be used to describe packets sent by the protocol. Elements of the Packet 
data type (see Section 14.3.8) are triples [contents, source, dest], in which the contents field represents 
a message, the source field the Node sending the message, and the dest field the set of Nodes to 
which the message should be delivered. The state of the multicast algorithm consists of a multiset 
network, which represents the packets currently in transit, and an array queue, which represents, for 
each Node, the sequence of packets delivered to that Node, but not yet read by the Node. 
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vocabulary Packet 
types Message, Node, Packet : Tuple [contents: Message, source: Node, dest: Set[Node]] 

end 

automaton Multicast 
imports Packet 

signature

input mcast(m: Message, i: Node, I: Set[Node])

internal deliver(p: Packet)

output read(m: Message, j: Node)


states

network: Mset[Packet] : = ∅;

queue: Array[Node, Seq[Packet]];

initially ∀i: Node (queue[i] =∅)


transitions

input mcast(m, i, I)


eff network : = insert([m, i, I], network);


internal deliver(p)

pre p ∈ network;

eff for j: Node in p.dest do


queue[j] : = queue[j] �p;

od;


network : = delete(p, network);


output read(m, j)

pre queue[j] =� ∅∧head(queue[j]).contents =m;

eff queue[j] : = tail(queue[j]);


Code Sample 31: Tempo description of a multicast protocol 
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The mcast action inserts a new packet in the network; the tuple data type provides the notation 
[m, i, I] and the multiset data type provides the insert operator (see Section 11.4). The deliver action, 
which is described using a for statement, distributes a packet to all nodes in its destination set (by 
appending the packet to the queue for each destination node and then deleting the packet from the 
network). The read action receives the contents of a packet at a particular Node by removing that 
packet from its queue of delivered packets. 

There are two ways to describe the set of values for the control variable in a for statement. The 
first (shown in Code Sample 31) consists of the keyword in followed by an expression denoting a set 
or multiset of values of the appropriate type, in which case the program segment in the do clause 
is executed once for each value in the set or multiset. The second consists of the keyword where 
followed by a predicate, in which case the program is executed once for each value satisfying the 
predicate. These executions of the program occur in an arbitrary order, and Tempo requires that 
the effect of a for statement be independent of the order in which executions of its program occur. 

Using predicates to constrain effects The results of a program in the effects clause can be 
constrained by a predicate relating the values of state variables after a transition has occurred to 
the values of state variables before the transition began. For example, the transition definition 
for the swap action in the Arrange automaton (see page 56) can be rewritten using assignment 
statements to indicate that the array A may be modified only for certain indices (i and j) and using 
an ensuring clause to constrain the modifications. A primed state variable in this clause (i.e., A’) 
indicates the value of the variable in the post-state; an unprimed state variable (i.e., A) indicates 
its value in the pre-state. As shown below, this notation allows us to eliminate the local variable 
temp needed previously for swapping. 

transitions output swap(i, j: Nat) 
eff A[i] : = choose;


A[j] : = choose;

ensuring A’[i] =A[j] ∧A’[j] =A[i]


There are important differences between where clauses attached to nondeterministic choose 
operators and ensuring clauses. A where clause restricts the value chosen by a choose operator 
in a single assignment statement, and variables appearing in the where clause denote values in the 
state just before the assignment statement is executed. An ensuring clause can be attached only 
to an entire eff clause; unprimed variables appearing in an ensuring clause denote values in the 
state before the transition represented by the entire eff clause occurs, and primed variables denote 
values in the state after the transition has occurred. 

Recall that Tempo assumes that state variables do not change during a transition unless they 
are assigned to during execution of the effects program. When assignments include choose clauses, 
the overall result of the program may be nondeterministic; that is, it may allow several different 
post-states to arise from the same pre-state. Adding an ensuring clause allows us to restrict this 
nondeterminism, by limiting which post-states can arise from each pre-state. 

Thus, we may say that the choose statements in an effects program give the transition permis
sion to change the values of the variables on the left-hand sides. For example, if we eliminated the 
choose statements from the swap program above, the transition would not be allowed to change 
any elements of the array A, and so would not be able to guarantee that the ensuring clause could 
be satisfied. 
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11.6 Trajectories 

In Tempo, instantaneous changes to state variables upon the occurence of a discrete action are 
specified by transition definitions that follow the keyword transitions. Analogously, continous 
changes to state variables over time are specified by trajectory definitions that follow the keyword 
trajectories. 

Each trajectory definition starts with the keyword trajdef and has the following components: 

•	 a trajectory definition name, 

•	 an optional list of formal parameters and a where-clause constraining the values of the pa
rameters, 

•	 optional function definitions, 

•	 an optional invariant, 

•	 an optional stopping condition, and 

•	 an optional evolve condition, which is a collection of Differential and Algebraic Inequalities 
(DAIs). 

A trajectory definition defines a set of trajectories. A trajectory belongs to the set defined 
by a trajectory definition if every state in the trajectory satisfies the predicates in the invariant 
condition, none of the states in the trajectory, except possibly the final state, satisfies the stop when 
condition, and the evolution of the state follows the algebraic and differential equations in the evolve 
condition. We examine each of these more closely below. As in the case of transition definitions, 
trajectory definitions can have parameters and the values of these parameters can be constrained 
by where-clauses. 

An automaton with no trajectory definitions is the same as a basic untimed I/O automaton in 
which state can change only through discrete transitions. 

Multiple trajdef clauses can be used to define subsets of the set of all trajectories of an automa
ton. For example, the automaton Thermostat in Code Sample 32 defines two sets of trajectories, 
one that describes how the temperature inside a room changes when a heater in the room is off 
and another that describes how the temperature changes when the heater is on. The set of all 
trajectories for Thermostat is then the union of the sets defined by trajectory definitions heaterOff 
and heaterOn. 

The automaton ClockSync in Code Sample 33 describes how a collection of processes, indexed 
by natural numbers, exchanges the values of their separate physical clocks. The parameter u 
determines how often process i sends its value of physclock (its own physical clock), which may 
drift from real time with a rate bounded by r. The variable maxother records the largest physical 
clock value received from the other processes in the system, and the variable nextsend records when 
process i should send the value of its physical clock to the other processes. The logical clock, 
logclock, is defined to be the maximum of maxother and physclock. 

The automaton ClockSync has a unique trajectory definition, which defines the entire set of 
trajectories of this automaton. 
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automaton Thermostat(low, high, initialTemp, ambientTemp, coolingRate, heatingRate: Real) 
signature 

output turnOn, turnOff 
states 

temp: Real : = initialTemp;

isOn: Bool : = initialTemp < high;


transitions 
output turnOn


pre temp ≤low ∧¬isOn;

eff isOn : = true;


output turnOff

pre temp ≥high ∧isOn;

eff isOn : = false;


trajectories 
trajdef heaterOff


invariant ¬isOn;

stop when temp =low

evolve d(temp) =coolingRate∗(ambientTemp−temp);


trajdef heaterOn

invariant isOn;

stop when temp =high

evolve d(temp) =heatingRate;


Code Sample 32: Tempo description of a thermostat for controlling a heater 

automaton ClockSync(u, r: Real, i: Nat) where u > 0 ∧0 ≤r ∧r < 1 
signature


output send(m: Real, const i)

input receive(m: Real, j: Nat, const i) where j =� i


states 
nextsend: DiscreteReal : = 0;

maxother: DiscreteReal : = 0;

physclock: Real : = 0;


let logclock() : Real =max(maxother, physclock);→
transitions 

output send(m, i)

pre m =physclock ∧physclock =nextsend;

eff nextsend : = nextsend + u;


input receive(m, j, i)

eff maxother : = max(maxother, m);


trajectories

trajdef waitSend


stop when physclock =nextsend;

evolve (1 − r) ≤d(physclock);


d(physclock) ≤(1 + r); 

Code Sample 33: Tempo description of a clock synchronization algorithm 

62 



The following example illustrates a parametric trajectory definition4 . It describes a vehicle 
controlled by an external vel(v) input. The input gets recorded in a velocity state variable. Trajectory 
definition move(v) describes motion at velocity v, and is allowed to occur when the velocity variable’s 
value is v. 

automaton ControlledCar 
signature 

input vel(v: Real) 
states 

velocity: DiscreteReal : = 0; 
position: Real : = 0; 

transitions 
input vel(v) 

eff velocity : = v; 
trajectories 

trajdef move(v: Real) 
invariant velocity =v; 
evolve 

d(position) =v; 

11.6.1 Invariants 

An invariant for a trajectory definition can be defined using the keyword invariant followed by a 
predicate or a semicolon-terminated list of predicates on the formal parameters and state variables. 
In the case of multiple predicates the invariant is the conjuction of these. If no invariant condition 
is given it is assumed to be true. 

The invariant condition for a trajectory definition defines the set of states whose evolution is 
governed by the stopping condition and evolve condition. States that do not satisfy a trajectory 
definition’s invariant condition cannot appear anywhere in a trajectory described by that definition. 

The invariant conditions in trajectory definitions heaterOff and HeaterOn in Thermostat in Code 
Sample 32 are simple predicates involving a single variable isOn. When the value of isOn is false, 
the evolution of the analog variable temp is governed by the evolve and stopping conditions of the 
trajectory definition HeaterOff. Similarly, when isOn is true, the evolution of temp is governed by 
the conditions of the definition heaterOn. 

11.6.2 Stopping conditions 

A stopping condition for a trajectory definition can be defined using the keywords stop when 
followed by a predicate on the automaton parameters, trajdef parameters, and the state variables. 
If no stopping condition is given, it is assumed to be false. 

If the stopping condition for a trajectory definition is satisfied at a given point in time t of a 
trajectory τ , then t must be the end-point of τ . This means that time must stop at that point, 
allowing enabled actions to occur. Note that time need not advance until the point where the 
stopping condition is true: The automaton can choose to perform an output or internal action at 
a certain point in time even though the stopping condition is not true at that time; moreover, the 

While Tempo supports the definition of parametric trajectories, none of the backends can currently take advantage 
of them. Future versions of the suite will improve the backends 

63 

4



trajectory can be interrupted at any time by an input action. What a stopping condition expresses 
is simply that time cannot advance beyond the point where it becomes true. 

In automaton Thermostat, the stopping condition in trajectory definition heaterOff imposes the 
condition that time stops when the value of temp is equal to the value of low. This means time 
cannot advance any longer. Note that when this stopping condition becomes true and time stops, 
Thermostat will be able to perform a turnOn action. It is possible to modify the Thermostat automaton 
so that it allows a turnOn action to be performed any time when the value of temp is less than high, 
and analogously for turnOff: 

output turnOn 
pre temp < high ∧¬isOn; 
eff isOn : = true; 

output turnOff 
pre temp > low ∧isOn; 
eff isOn : = false; 

This modified automaton still does not allow temp to decrease below low, or increase above high. 
In automaton ClockSync periodic sending of the value of physclock to other processes is enforced by 

the stopping condition: time is not allowed to pass beyond the point at which physclock =nextsend. 

11.6.3 DAIs 

The behavior of analog variables in a trajectory definition is specified using a semicolon-terminated 
list of Differential and Algebraic Inequalities (DAIs) following the keyword evolve. Discrete vari
ables need not be mentioned in evolve conditions, because we assume that they remain constant 
during each trajectory. The DAIs constrain the set of trajectories, and thereby specify how the 
analog variables are allowed to evolve over time. If an analog variable does not occur in any DAI 
then it is assumed to evolve according to any arbitrary continuous function, constrained only by 
its dynamic type. 

In automaton Thermostat, when the heater is off the rate of change of temp with respect to real 
time is coolingRate∗(ambientTemp−temp). The notation d(temp) is used to specify rate with respect to 
real time. Here, the ambientTemp is the temperature outside the room; thus, the higher the tempera
ture is initially, the faster it cools towards the ambient temperature. When the heater is on, the tem
perature rises linearly with elapsed time, as specified by the evolve condition d(temp) =heatingRate. 
In automaton ClockSync the evolve condition states that the variable physclock changes continuously, 
with a drift rate bounded by r. 

Since invariant conditions, stopping conditions, and evolve conditions are optional it is possible 
for an automaton to have an empty trajectory definition. Recall that in this case the default 
invariant condition is true and the default stopping condition is false. Hence, an empty trajectory 
definition defines a set of trajectories in which any amount of time is allowed to pass, discrete 
variables remain constant and other variables are allowed to changed arbitrarily, according to their 
dynamic types. 

11.7 User-defined functions 

Tempo allows users to define their own functions to use in specifications. A function definition 
can occur as a stand-alone specification unit outside the automaton (a global function), in an au
tomaton following state variables (an automaton-wide function), in a transition definition following 
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local variables and before the preconditions, or within a trajectory definition after its name and 
parameters. 

A function definition begins with the keyword let and consists of a name, an optional list of 
formal parameters, and an expression defining the body of the function. In Tempo, the type of a 
function must be provided explicitly; it cannot be inferred automatically. Functions are allowed 
to be recursive. The following code fragment shows how the factorial function can be defined in 
Tempo. The type annotation shows that fact is a function from type Nat to type Nat. Individual 
type annotations for formal parameters are not required. 

let fact(n): Nat Nat = →
if n =0 then 1 
else n ∗ fact(n−1); 

The scope of a function and the identifiers that can occur in a function naturally depend on where 
in the code the function is defined. Each constant, operator, or variable appearing in the expression 
defining the body of the function must be defined in the current context. For example, if a function 
is defined after the state variables of an automaton, then it can refer to functions defined outside the 
automaton, and to the automaton’s formal parameters and state variables. If a function is defined 
within a transition definition, then it can refer to all of these and additionally to the parameters of 
that transition definition. Each transition definition or trajectory definition has a distinct scope, 
that is, functions that are defined in separate transition definitions or trajectory definitions can 
refer to global functions or automaton-wide functions but not to one another. 

let dist(x1,x2,y1,y2): Real,Real,Real,Real→Real =sqrt((x2 − x1)∗(x2 − x1)+(y2 − y1)∗(y2 −y1)); 
automaton Track 

signature 
input TargetUpdate(x,y: Real) 

states 
pos: Tuple[x: Real, y: Real]; 
togo: AugmentedReal : = ∞; 

let distToTarget(x,y) : Real,Real Real =dist(x,pos.x,y,pos.y);→
transitions 

input TargetUpdate(x,y) 
eff togo : = distToTarget(x,y); 

In the code fragment above, the variable pos represents the position of a vehicle on a plane. The 
evolution of pos is not of interest to us and hence is not shown. The vehicle receives information 
about the location of targets through the input action TargetUpdate(x,y) and updates the variable 
togo with the value of its current distance to the most recently detected target (x,y). The function 
dist returns the Euclidean distance between any two points (x1,y1) and (x2,y2). It is a global function 
and does not use any of the automaton variables. The function distToTarget returns the distance of 
any point (x,y) to pos. This function uses dist and the state variable pos. This is legal because its 
definition appears after the states section of the code and so the state variable pos is in its scope. 
The action TargetUpdate(x,y) updates the variable togo with the distance of pos to (x,y) as computed 
by distToTarget. 

When a function definition occurs within an automaton definition, just after state variables, 
such as distToTarget in the above fragment, each formal parameter of the function must differ 
from the formal parameters and variables of the automaton. Functions that are defined within an 
automaton after state variables can refer to other functions that are defined outside the automaton. 
Likewise, when a function definition occurs within a transition or trajectory definition, each formal 
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parameter of the function must differ from any parameter of that transition or trajectory definition. 
In the case of multiple function definitions within a given scope, it matters whether a function 

is textually defined before another. Consider the following automaton-wide functions. 

let addone(n) : Int Int =n+1;→
let bar(m) : Int Int =div(addone(m),2);→
Here, the function bar can call addone, which is defined before it, but not vice versa. Mutual 
recursion is not supported in Tempo. 

12 Operations on Automata 

The Timed I/O Automata mathematical model includes two separate operations on automata: 
parallel composition and action hiding. See Chapter 7 of [2] for formal definitions of both operations. 

The composition operation combines a collection of TIOAs into a single TIOA. The automata 
being combined must satisfy certain compatibility conditions, namely, that no action is an output 
of more than one automaton, and that no internal action of any automaton is shared with any other 
automaton. The set of states of the composition is the Cartesian product of the sets of states of 
the component automata, and likewise for the start states. Composition identifies actions with the 
same name in different component automata. That is, when any component automaton performs a 
step involving an action π, so do all component automata that have π in their signatures. Formally, 
a triple (s, π, s�) is in the transition relation for the composite automaton if, for every component 
automaton C , (sC , π, s�

C ) is a transition of C when π is an action of C and sC = s�
C when π is 

not an action of C. An action is classified as an output action of the composition if it is an output 
action of some component automaton. An action is an input action of the composition if it is an 
input action of some component automaton, but not an output action of any component. Finally, 
an action is an internal action of the composition if it is an internal action of some component 
automaton. 

The hiding operation “hides” output actions of a TIOA by reclassifying them as internal actions. 
This prevents them from being used for further communication and means that they are no longer 
included in traces. 

In Tempo, we use just one construct to express both operations. This construct allows us to 
specify a collection of automata to be composed, and then to specify which (if any) output actions 
of the combination are to be hidden. We can use this combined construct to express parallel 
composition alone, by not hiding any output actions. We can also use it to express action hiding 
alone, by “composing” a collection consisting of just a single automaton before hiding actions. 

An example of the use of this combined operation is the following, which is extracted from the 
leader-election example in Section 7. 

automaton LeaderSystem(delta,e,u: Real) where delta > 0 ∧e > 0 ∧u > 0 
components 

E[j: J]: Elect(j, delta, e, u); 
FD: FailureDetector(delta); 

hidden 
status(L,j); 

The LeaderSystem automaton consists of a collection of Elect automata, one for each j in a given 
set J of process identifiers, plus one FailureDetector automaton, which provides the Elect automata 
with information about process failures. The Elect automata are defined in Figure 15, and the 
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FailureDetector automaton in Figure 16. The status(L,j) actions, by which the failure detector notifies 
the processes about failures, are hidden in the final LeaderSystem. 

In general, a Tempo specification of a composite automaton begins with the keyword automaton 
followed by the name of the automaton. This may in turn be followed by a list of formal parameters, 
and an optional where clause which may constrain the values of these parameters. 

The LeaderSystem automaton takes three non-negative real numbers as arguments. delta is an 
upper bound on the amount of time that can elapse between two reports produced by the failure 
detector. u is an upper bound on the time between two “I’m the leader” announcements by an 
elected Elect automaton, and e is used to define deadlines for elections within an Elect automaton. 
The LeaderSystem automaton uses a where clause to ensure that all three constants are positive. 

The Tempo specification of a composite automaton continues with the components keyword, 
followed by a semicolon-terminated list of the automata involved in the composition. Each element 
in this list can describe either a single automaton or an indexed collection of automata. 

In the case of a single automaton, the list element contains a description of the component, in 
terms of a previously-defined automaton. The list element also contains a new name that can be 
used to refer to the component within the context of the composite automaton. This name is useful 
in carrying out proofs about the composite automaton, and in specifying schedules for simulating 
the composite automaton. The name precedes the component description, with a colon intervening. 
The case of an indexed collection of automata is similar: the list element contains a description of 
the collection of automata, and a collection of new names by which they can be referenced within 
the composite automaton. 

In the LeaderSystem automaton, the list of components has two lines, one for all of the Elect au
tomata and one for the single ’FailureDetector’ automaton. The LeaderSystem requires one instance 
of Elect for each process identifier. The line 

E[j : J] : Elect(j,delta,e,u); 
creates a map E containing one automaton for each value j in the set J of process identifiers. These 
automata are defined after the colon. The automaton E[j] is defined to be an instance of Elect with 
four arguments: the process identifier (j) and the three timing constants delta, e, u. For an example 
of how this can be used, suppose that J = {1, 2, 3, 4, 5}. Then the expression E[3].live denotes the 
value of the live state variable, in the automaton E[3] =Elect(3,delta,e,u). This represents process 
3’s view of the set of live processes. 

The line 

FD: FailureDetector(delta); 
defines the final component of LeaderSystem: an instance of the FailureDetector automaton, which is 
referred to as FD. 

Tempo also allows a list entry for an indexed collection of automata to include a where clause; 
this enables selection of automata whose indices satisfy some property. Any boolean formula can 
be used in the where clause. For instance, if J = {1, 2, 3, 4, 5}, then 

E[j : J] : Elect(j,delta,e,u) where mod(j,2) =0; 
would populate the map E with two automata, with identifiers 2 and 4. 

To express action hiding, Tempo uses an optional section that begins with the keyword hidden, 
and continues with a semicolon-terminated list of actions to be hidden. Each list entry must include 
an action name and may have a list of arguments. These arguments must be matched by number 
and position with the arguments of the same-named actions of the component automata. 

The specification of LeaderSystem contains the fragment 
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hidden 
status(L,j); 

which says that the status actions of all the components should be made internal. The status actions 
are outputs of the FailureDetector component automaton, in which they are declared as follows: 

output status(L: Set[J], j: J) 

The two arguments for status in the LeaderSystem definition correspond with those in the FailureDetector 
definition. However, the actual names for the arguments in LeaderSystem are immaterial; for exam
ple, we could have written 

hidden 
status(a,b) 

with the same meaning. 
Tempo also allows a list entry for a parameterized collection of actions to include a where clause; 

this enables selection of certain instances of the action to be hidden. For instance, the statement 

hidden 
status(L,j) where j \not ∈ L; 

would hide the status action only in the special case when j is not a member of L, that is, when j 
is being notified that it is not live. 

13 Invariants and Simulation Relations 

Invariants and simulation relations are two of the most important concepts used in reasoning about 
TIOAs. Invariants are used in stating properties of the reachable states of a single automaton, and 
simulation relations are used in proving an implementation relationship between two automata, by 
relating the states of the two automata. 

13.1 Invariants 

An invariant of a Timed I/O Automaton is a property that is true in all reachable states of 
the automaton. In Tempo, it is possible to specify invariants for automata. An invariant of an 
automaton starts with the phrase invariant of, followed by the name of the automaton, followed 
by a semicolon-terminated list of first-order predicates that can refer to state variables and formal 
parameters of the automaton. For example, 

invariant of TimedChannel: 
∀i: Nat: (queue =� \emptyset ∧1 ≤i ≤len(queue) ⇒ 

queue[i].deadline ≥now); 
∀i: Nat ∀j: Nat (1 ≤i ∧i ≤j ∧j ≤len(queue) 

queue[i].deadline ≤queue[j].deadline); 
⇒ 

specifies that the deadlines that occur in a packet queue of a TimedChannel (Figure 28) are all in 
the future, and that the deadlines occur in nondecreasing order. 

Tempo also allows multiple invariants of the same automaton to be written separately (and 
possibly named), instead of using a list. For example, the invariant of TimedChannel above can be 
broken down into two separate invariants: 

invariant A1 of TimedChannel: 
∀i: Nat: (queue =� \emptyset ∧1 ≤i ≤len(queue) ⇒ 
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queue[i].deadline ≥now); 
invariant A2 of TimedChannel: 

∀i: Nat ∀j: Nat (1 ≤i ∧i ≤j ∧j ≤len(queue) ⇒ 
queue[i].deadline ≤queue[j].deadline); 

When the effects of an automaton’s transition are defined by a program that consists of more 
than one statement, then the states between the executions of those statements are intermediate 
states, which do not appear in the execution fragments of the automaton. Invariants are not 
required to be true in such intermediate states, (unless they are also reachable). For example, 
consider the automaton fischer from Figure 1 and the transition definition for test(i). The second 
invariant from Figure 5 need not hold in the intermediate state that appears after setting pc[i] to 
pc set but before changing the value of last set[i]. 

13.2 Simulation relations 

An automaton A is said to implement an automaton B provided that A and B have the same 
input and output actions and that every trace of A is also a trace of B. In order to show that A 
implements B, one can use a simulation relation between states of A and states of B (see Section 3.3 
for a high-level explanation of simulation relations and [2] for formal definitions). 

Suppose that A and B have the same input and output actions. A relation R between the states 
of A and B is a forward simulation if 

•	 every start state of A is related (via R) to some start state of B, 

•	 for every state s of A and every state u of B such that R(s, u), and for every discrete step 
(s, π, s�) of A, there is an execution fragment α of B starting with u, that has the same trace 
as π and that ends with a state u� such that R(s�, u�), and 

•	 for every state s of A and every state u of B such that R(s, u), and for every trajectory τ of 
A starting with s, there is an execution fragment α of B starting with u that has the same 
trace as τ and that ends with a state u� such that R(s�, u�). 

A general theorem is that A implements B if there is a forward simulation from A to B (see 
Chapter 4 of [2]. 

A Tempo specification of a forward simulation begins with the keywords forward simulation, 
followed by a name for the simulation relation. This name may be followed by a list of formal 
parameters and an optional where clause involving these parameters. It continues with descriptions 
of the two automata involved in the simulation. The “lower-level” automaton (A in the forward 
simulation definition above) is specified using the keyword from, followed by a short name for the 
automaton, followed by a colon and a description of the automaton. Similarly, the “higher-level” 
automaton (B above) is specified using the keyword to, followed by a short name, a colon, and a 
description of the automaton. We assume that the automata are defined elsewhere; their formal 
parameters are replaced by actuals that are computed from the formal parameters of the forward 
simulation. 

Short names are used within the context of the forward simulation, for instance, in designating 
state variables of the two automata. This use of short names is similar to their use in composition 
(see Section 12). 

The Tempo specification of a forward simulation then continues with the keyword mapping, 
followed by the definition of the actual mapping. This definition is a first-order predicate involving 
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the formal parameters of the forward simulation and the state variables of the two automata. 
Whenever a state variable appears in the mapping, it is prefaced by the short name of the automaton 
to which it belongs. 

The mapping can also be a semicolon-terminated list of predicates; as elsewhere, this is inter
preted as the conjunction of the individual predicates. 

Consider two instances of TimedChannel (Figure 28), TimedChannel(2,M) and TimedChannel(3,M), 
where M is a predefined message alphabet. In a trace of TimedChannel(2,M), the time that elapses 
between the placement of a packet in the queue and its removal can be at most 2 time units. Clearly, 
any such trace would also be a trace of TimedChannel(3,M), which allows packets to remain in the 
queue for up to 3 time units. This implementation relationship can be proved by showing the exis
tence of a forward simulation relation from TimedChannel(2,M) to TimedChannel(3,M). The following 
is the definition of a forward simulation relation F from TimedChannel(2,M) to TimedChannel(3,M): 

forward simulation F 
from TC1: TimedChannel(2,M) 
to TC2: TimedChannel(3,M) 

mapping 
TC1.now =TC2.now 
∧len(TC1.queue) =len(TC2.queue) 
∧∀i: Nat: 1 ≤i ≤len(TC1).queue: 

TC1.queue[i] =[m,u1] 
(∃ u2: Nat TC2.queue

⇒
[i] =[m,u2] ∧u1 ≤u2) 

end 

A state x of TimedChannel(2,M) is related to a state y of TimedChannel(3,M) by the relation F if all 
of the conditions in the mapping part are met. Namely, the value of the variable now must be 
the same in both x and y, the packet queues must be of the same length, and if a message m in 
position i is associated with a particular deadline u1 in x, then the ith position in the packet queue 
of y must contain the same massage m associated with a deadline u2 that is at least as large as 
u1. Note that we use TC1 and TC2 as short names for TimedChannel(2,M) and TimedChannel(3,M) 
in the mapping part. 

We may also want to define a forward simulation from one automaton to another without fixing 
their parameters. For example, in the case of timed channels, it should be clear that a timed 
channel with maximum delay r1 should implement any other timed channel with the same message 
alphabet that has a maximum delay that is greater than or equal to r1. In other words, we may 
want to define a forward simulation from TimedChannel(r1,M) to TimedChannel(r2,M), for any case 
where r1 ≤ r2. Here, we do not fix the parameters r1 and r2 as we did in the example above, but 
just constrain their values so that the forward simulation is defined only for those instances where 
r1 ≤ r2. 

forward simulation F(r1,r2) 
where r1 ≤r2 
from TC1: TimedChannel(r1,M) 
to TC2: TimedChannel(r2,M) 

mapping 
TC1.now =TC2.now 
∧len(TC1.queue) =len(TC2.queue) 
∧∀i: Nat: 1 ≤i ≤len(TC1).queue, 

TC1.queue[i] =[m,u1] 
(∃ u2: Nat TC2.queue

⇒
[i] =[m,u2] ∧u1 ≤u2) 
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end 

The forward simulation relation of 9, for the TwoTaskRace example, is also an example of this kind. 
Defining a forward simulation relation in Tempo consitutes an important step toward proving an 

implementation relationship. After defining a forward simulation relation, one must still prove that 
the defined relation is indeed a simulation relation. This requires establishing the three conditions 
in the definition of a simulation relation. Specifically, one must show that the relation holds in the 
start state and is preserved by discrete transitions and trajectories. 

The Tempo Toolset includes a simulator that can check empirically that a defined relation 
is actually a forward simulation relation. It does this by following a “paired simulation” strat
egy, executing two automata—one representing an implementation and the other the abstract 
specification—together. The Tempo language supports writing “schedules” and “proof blocks” 
that are used by the simulator in executing automata and in checking simulation relations. Proof 
blocks specify how the individual steps of an automaton representing an implementation can be 
matched by steps of an automaton representing the abstract specification, so that the conditions 
of the simulation relation can be satisfied. The details of this part of the language can be found in 
the documentation for the simulator. 

14 Data types in Tempo 

Tempo supports the notions of static type and dynamic type in tandem with the underlying the
oretical framework. Each variable has a static type, which specifies the values that the variable 
can take on. This corresponds to the standard notion of data type in languages and in the rest of 
this section we often use the term data type and static type interchangeably. Dynamic types are 
functions that describe the evolution of a variable over time; for example, they specify whether a 
variable remains constant during trajectories or may change value continuously. 

Tempo requires its users to declare the static types of variables explicitly. The dynamic type 
of a variable, on the other hand, is inferred from its static type. The semantic analysis of a TIOA 
specification by Tempo uses the static types of declared objects in the specification to verify its 
correctness. Formally, Tempo uses a typing context Γ : I → T that maps identifier to static types, 
i.e., Γ is of the form Γ = [i0 �→ T0, i1 �→ T1, , in �→ Tn] where i0 · · · in are type identifiers drawn · · · 
from I while T0 through Tn are static types drawn from T . Γ contains, at the very least, all the 
primitive data types (i.e., Bool,Nat, Int, Real, Char, and String) defined in Subsection 14.1. Subsection 
14.3 shows how to define additional types with constructors (i.e., Array, Map, Mset, Null, Seq, 
Set, Enumeration, Tuple, and Union) whereas Subsection 14.4 shows how to extend the typing 
context through aliases. Subsection 14.5 shows how abstract data types (the combination of static 
types and operations) can be defined with vocabularies. 

Note that Tempo augments Γ with two other built-in data types: DiscreteReal whose static type 
is identical to Real but with a dynamic type equal to the set of piecewise continuous real- valued 
functions. DiscreteReal is typically used with discrete variables only. AugmentedReal simply adds 
two elements, +∞ and −∞ to the type Real. AugmentedReal variables are used, for example, as 
discrete deadline variables, which are used to impose upper bounds on the time of occurrence of 
actions. When the automaton performs discrete transitions, this upper bound may change. When 
we want to remove a deadline for an action we set the deadline variable for it to +∞. DiscreteReal 
variables are used, for example, as earliest time variables, which impose lower bounds on the time 
of occurrence of actions. Since a default lower bound can be 0, we don’t need to use AugmentedReal 
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variables for this purpose. See, for instance, the fischer example in Section 4) for such uses of 
deadline and earliest time variables. 

14.1 Primitive data types 

14.1.1 Booleans 

The data type Bool has two elements, true and false, which are called boolean or logical values. 
The following notations may be used to denote boolean values or functions that can be applied to 
boolean values p and q. In the table, rows 3 − 7 denote boolean operators. The column labeled 
Alternate gives the Tempo notation while columns Prec and Assoc respectively provide the op
erator precedence and associativity. Note that a higher precedence is denoted by a larger numerical 
value. For instance, the expression a \/ b /\ c will be interpreted as a ∨ (b ∧ c) as the disjunction 
has a lower precedence than the conjunction. These conventions will be used throughout the rest 
of the document.


Symbol
 Alternate

true 
false 

~ ¬ 
/\∧ 
\/∨ 
=>⇒ 
<=>⇔ 

Prec.


6 
3 
2 
1 
1 

Assoc. 

left 
left 
left 
left 

Sample use

true 
false 
¬p 

p ∧q 
p ∨q 
p q⇒
p q⇔

Meaning

The logical value true

The logical value false

Negation (not)

Conjunction (and)

Disjunction (or)

Implication (implies)

Logical equivalence (if and only if)


The following operators can be used to denote boolean values that result from binary equality or 
disequality testing and apply to values x and y, both of which must have the same type. The table 
also illustrates how to define first-order boolean expressions with either universal or existential 
quantifiers. 

Symbol 
= 
= 
∀ 
∃ 

Alternate


~=

\A

\E


Prec.

1

1

0

0


Assoc. 
left 
left 

prefix 

Sample use

x =y 
x =y 

∀n:Nat (n < 0)¬
∃i:Int (i < 0) 

Meaning

Equal to 
Not equal to 
For all 
There exists prefix 

Recall that the operator has higher precedence than the operators ∧ and ∨, which themselves ¬ 
bind more tightly than ⇒, which binds more tightly than ⇔. Thus, ¬(p ∧q) ⇔¬p ∨¬q abbreviates 
the fully parenthesized expression (¬(p ∧q)) ⇔((¬p) ∧(¬q)). Naturally, parentheses are required to 
distinguish (p ⇒p) ∧q, which always has the value q, from p ⇒p ∧q, which abbreviates p ⇒(p ∧q) 
and always has the value true. 

14.1.2 Natural numbers 

The elements of the data type Nat are the non-negative integers 0, 1, 2, ..., which are called natural 
numbers or N for short. The following notations may be used to denote natural numbers, operators 
or functions that can be applied to natural numbers x, y, and z. 
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Symbol Alternate Prec. Assoc. Sample use 
0, 1, ... 123 

succ fun succ(x) 
pred fun pred(x) 
+ 5 left x + y + z 
− 
∗ 

- 5 
6 

left 
left 

x − y 
x ∗ (y∗∗z) 

∗∗ 7 right x ∗∗ y 
min, max fun min(x, y) 
div, mod fun mod(x, y) 

< , ≤ 
> , ≥ 
=, �= 

< , <= 
> , >= 
=, ~= 

4 
4 
4 

left 
left 
left 

x ≤y 
x > y 
x =y 

Meaning

Natural numbers 
Successor (succ(x) =x+1) 
Predecessor (pred(succ(x)) =x) 
Addition 
Subtraction (undefined if x < y) 
Multiplication, exponentiation 
exponentiation xy 

Minimum, maximum 
Quotient, modulus 
Less than (or equal to) 
Greater than (or equal to) 
Equal to, not equal to 

The values of the functions div(x, y) and mod(x, y) are defined when y > 0, in which case 
mod(x, y) < y and x =y∗div(x, y) + mod(x, y). The binary operators follow the traditional prece
dence and associativity and ∗∗ has the highest precedence. Note also that the exponentiation 
operator is right-associative. For instance, the expression x+y∗z∗∗w stands for 

x + (y ∗ z w) 

Parentheses can be used to override the default precedence and associativity rules. Some operators 
like div, mod, min or max use a prefixed functional notation and therefore require parentheses around 
the list of arguments. 

14.1.3 Integers 

The elements of the data type Int are the integers .., −2, −1, 0, 1, 2, ... . All the notations applicable 
to natural numbers have the same meaning when those natural numbers are considered as integers, 
and they have suitably extended meanings when used with integers. In particular, the value of 
x − y is always defined (and is an integer) if x and y are integers, but the value of x∗∗y is not an 
integer if y is negative. 

The following additional notations may be used to denote functions that can be applied to 
integers. 

Symbol Alternate Prec. Assoc. Sample use 
−
abs 

- 8 
fun 

−x 
abs(x) 

Meaning

Additive inverse (unary minus) 
Absolute value 

Syntactically, a numeric constant (e.g., 0 or 1) can denote either a natural number or an integer 
(or even a real number). In many cases, it makes no difference which of these it denotes, because 
Tempo treats the natural numbers as a subset (subtype) of the integers and the integers as a subset 
(subtype) of the real numbers. In other cases, it does make a difference. For example, the type of 
the expression x∗∗y will be a natural number if both x and y are natural numbers, an integer if x 
is an integer and y is a natural number, and a real number if x is not an integer or y is negative. 
Tempo usually determines the types of numeric constants from the contexts in which they appear. 
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14.1.4 Real numbers 

The elements of the data type Real are real numbers and belong to R. All notations (except succ, 
pred, div, and mod) that can be used with integers have the same meaning when those integers 
are considered as real numbers, and they have suitably extended meanings when used with real 
numbers. In addition, x/y denotes the value of x divided by that of y, with the exception that the 
value of x/0 is undefined, and floor(x) denotes the largest integer that is less than or equal to x. 

Discrete vs. Analog In Tempo, the static type DiscreteReal is identical to the static type Real. 
The only difference is the dynamic type that Tempo associates with variables of this type. A 
variable with static type DiscreteReal is a discrete variable, whereas one with type Real is an analog 
variable. 

Basic vs. Augmented The elements of the type AugmentedReal are the real numbers plus two 
additional elements +∞ and −∞. Tempo extends the numerical type hierarchy and considers that 
the Real type is a subtype (subset of values) of AugmentedReal. 

Vocabulary definitions Tempo relies on two vocabularies to define the operations authorized 
on Real and AugmentedReal. The definition of the Real vocabulary is 

vocabulary Real 
types Real 
operators 
− , abs: Real →Real,

∗∗ : Real, Int →Real,


floor: Real Int,

+	 , −

→
, ∗ , / , min, max: Real, Real →Real,


< , , > , , = , = : Real, Real Bool
≤ ≥ � →
end 

and the definition of the AugmentedReal vocabulary is 

vocabulary AugmentedReal 
types AugmentedReal 
operators 
∞: →AugmentedReal,

− , abs: AugmentedReal →AugmentedReal,

∗∗ : AugmentedReal, Int →AugmentedReal,


floor: AugmentedReal Int,

+	 , − , ∗ , /

→
, min, max: AugmentedReal, AugmentedReal →AugmentedReal,


< , ≤ , > , ≥ , = , =� : AugmentedReal, AugmentedReal →Bool

end 

Note that Tempo automatically imports the relevant built-in vocabularies as soon as the spec
ification being checked refers to the corresponding type. The correspondence relies on the file 
naming convention. For instance, the AugmentealReal vocabulary defines the AugmentedReal type 
and is stored in a (built-in) file named AugmentedReal.tioa. Consequently, Tempo users should 
not use Real,Int,Nat,AugmentedReal,Bool,Seq,Set,Mset,Char,String as Tempo filenames as 
these would interfere with the automatic loading. 
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14.1.5 Characters 

The elements of the data type Char are the characters for letters and digits (Future versions of 
Tempo may introduce other elements in this data type.) The following notations may be used to 
denote characters. 

Symbol 
’A’, ..., ’Z’ 
’a’, ..., ’z’ 
’0’, ..., ’9’ 

< , ≤, > , ≥ 

14.1.6 Strings 

Alternate


<, <=, >, >=


Sample use

’J’

’j’

’7’


’A’ < ’Z’


Meaning

Uppercase letters 
Lowercase letters 
Digits 
Alphabetic ordering 

The elements of the data type String are sequences of characters. All notations that can be used 
with the data type Seq[Char] (see Section 14.3.5 can also be used with the String data type. In 
addition, the symbols < , ≤, > , and ≥ represent the lexicographic ordering. String literals can be 
specified as a sequence of characters enclosed in double quotes as in "hello". 

14.2 Casting 

Each primitive type supported by Tempo is associated to a static type and is part of a simple type 
hierarchy shown in Figure 14.2 where the most general type is AugmentedReal and the upward arrows 
indicate sub-typing (S <: T means S is a sub-type of T ) relationships. Tempo uses a sub-typing 
subsumption rule to determine the validity of specific statements. The subsumption rule 

AugmentedReal

Real

Int

Nat

Bool

Figure 14.2: Primitive data types hierarchy. 

Γ � e : S, S <: T 
Γ � e : T 

states that whenever the expression e has static type S and S is a sub-type of T within the typing 
context Γ, then e also has type T within the same context Γ. For instance, the fragment 
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x : Real : = 4;


is well-typed simply because 4 is an Int and by subsumption 4 is also Real, which matches the

expected type of the left-hand side declaration of x, i.e., Real. The type conversion taking place

here is an implicit upcast which is always safe. Sometimes, it is necessary to convert a value from

an abstract to a more specialized numeric type. This operation is commonly known as a downcast

and Tempo supports it. For instance, the statement


x : Nat : = (Nat)4.0;


first converts a value (4.0) from the static type Real to the static type Nat and assigns the resulting

value to the variable x of type Nat. Thanks to the type cast operation, the statement is well typed.

In general, the expression (T)e denotes a type casting and must satisfy the typing rule


Γ � e : S, T <: S

Γ � e : T


which states that whenever expression e is of type S and T is a sub-type of S within the typing 
context Γ, the value denoted by e can be converted to a value of type T , although a loss of precision 
is possible. Clearly, casting 3.1415 to type Nat will result in an unspecified behavior (the current 
implementation rounds the value to the nearest natural number) and it would always be wise to 
safeguard the casting operation with tests or rounding operations as in 

x : Nat : = (Nat)floor(3.1415); 

Casting operators have the highest precedence among all Tempo operators and it is therefore 
advisable to use parentheses to ensure a suitable grouping. For instance, the statement 

x : Nat : = (Nat)(5.0 + floor(3.1415)); 

first computes �3.1415� and adds the real number 5.0 to obtain the real 8.0 before converting it to 
the natural 8. If the parentheses are omitted, the fragment is not well-typed. Indeed, 5.0 would 
first be converted to a Nat, then promoted to a Real given that the binary + operator is only defined 
for pairs of values of the same static type and floor(3.14) is of type Real. The result of the addition 
is therefore a Real and cannot be safely assigned to x that happens to be of type Nat. 

14.3 Type constructors 

The following type constructors and operators require no declaration. 

14.3.1 Arrays 

For each n > 0, the elements of the data type Array[T1,..,Tn, E] are the n-dimensional arrays of 
elements of type E indexed by elements of types T1, ..., Tn. The following notations may be 
used to denote arrays or functions that can be applied to arrays A and B of types Array[I, E] and 
Array[I, J, E]. 

Symbol

constant 

...[..., ..., ...]


...[..., ..., ...] := e


Sample use

constant(e) Array with all elements equal to e 

A[i] Element of A indexed by i:I 
B[i, j] Element of B indexed by i:I and j:J 

B[i,j] : =e Replaces B by B’ where B’ equal to B except that B’[i, j] =e 

Meaning


76




The dimension of the array denoted by constant(e) is inferred from its context. For instance, 
given the expression constant(e)[i], Tempo determines that the array is one-dimentional, is indexed 
by values drawn from the type of i and all its elements have the type of expression e, i.e., the static 
type of the array is derived according to the typing rule 

Γ � e : E, i : T

Γ � constant(e) : Array[T, E]


which states that, within the typing context Γ, if e has type E and the index i has type T , then 
within the same context Γ, the expression constant(e) denotes a one-dimentional array and its type 
is Array[T,E]. Arrays and matrices can be modified easily. For instance the fragment 

transitions output write(i : Int,v : Int) 
eff x[i] : = v; 

performs an assignment that modifies the entry i of the array x so that it now refers to value v. Note 
that the assignment can be thought of as a sequence of two operations: one that non-destructively 
creates a new array x’ equal to x except that x’[i] = v and a second operation that assigns x’ to x. 

14.3.2 Finite sets 

The elements of the data type Set[E] are finite sets of elements of type E. The following notations 
may be used to denote sets of type Set[E] or functions that can be applied to sets s and s’ of type 
Set[E] and an element e of type E. 

Symbol

∅

{...}


{e1, , en}
· · · 
insert 
delete 
∈ 

\notin 
∪, I, − 
⊂, ⊆ 
⊃, ⊇
size 

Alternate

{}


\in

\notin

\U, \I,


\subset, \subseteq

supset, \supseteq


Sample use

∅

{e}


{1,2,3,4,5}

insert(e, s)

delete(e, s)


e ∈ s

e \notin s


(s ∪s’) − (s ∩s’)

s ⊂s’

s ⊇s’

size(s)


Meaning

Empty set 
Singleton set containing e alone 
set of n elements given in extension 
Set containing e and all elements of s 
Set containing all elements of s, but not e 
Member of 
Not a member of 
Union, intersection, difference 
(Proper) subset 
(Proper) superset 
(Natural) number of elements in s 

14.3.3 Finite mappings


The elements of the data type Map[D1, ..., Dn, R] are finite partial mappings with an n-dimensional 
domain of type D1 × ... × Dn to elements of a range with type R. Mappings differ from arrays 
in that they are defined only for finitely many elements of their domains (and hence may not be 
totally defined). The following notations may be used to denote mappings or functions that can be 
applied to mappings m and m’ of types Map[I,R] and Map[I, J, R]. 
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� � 
� � 
� 

Symbol Alternate 
{}∅

...[..., ..., ...] 

defined

update

remove


Sample use

∅ 

m[i]

m’[i, j]


defined(m, i)

update(m, i, r)

remove(m,i)


Meaning

Empty mapping

Image of i:I under m (if defined)

Image of i:I and j:J under m’ (if defined)

True if m[i] is defined

m" is equal to m except that m"[i] =r

m" is equal to m except that m"[i] is undefined.


14.3.4 Finite multisets 

The elements of the data type Mset[E] are finite multisets of elements of type E. All notations that 
can be used with sets of type Set[E] have suitably extended meanings when used with multisets of 
type Mset[E]. In addition, the symbol count denotes a binary function such that count(e, s) is the 
(natural) number of times an element e occurs in a multiset s. 

14.3.5 Sequences 

The elements of the data type Seq[E] are finite sequences of elements of type E. The following 
notations may be used to denote sequences of type Seq[E] or functions that can be applied to 
sequences s and s’ of type Seq[E] and elements e of type E and n of type Nat. The first index in a 
sequence is supposed to be 0. 

Symbol

∅ 

∈ 
\notin 

head, last 
init, tail 

len 
...[...] 

Alternate

{} 

\in 
\notin 

Sample use

∅


s �e

e �s

s �s’

e ∈ s


e \notin s

head(s)

tail(s)

len(s)

s[n]


Meaning

Empty sequence 
Sequence with e appended to s 
Sequence with e prepended to s 
Concatenation of s and s’ 
Member of 
Not a member of 
First (last) element in s 
All but first (last) elements in s 
Length of s 
nth element in s 

14.3.6 Extensions by nil 

The elements of the data type Null[E] consist of a copy of each element of the underlying data type 
E, plus one additional element nil. The following notations may be used to denote elements of type 
Null[E] or functions that can be applied to an element e of type E or an element n of type Null[E]. 

Symbol

nil 

embed 
val 

Sample use

nil The additional element nil 

embed(e) The element corresponding to e:E 
val(n) The e such that n =embed(e); undefined if n =nil 

Meaning
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14.3.7 Enumerations 

The data type Enumeration[e1, , en] denotes a finite set with elements e1, , en. The set is · · · · · · 
ordered where the successor of an element e is denoted by succ(e) and corresponds to the element 
textually following e in the enumeration. Enumeration can be used to index arrays or maps. For 
instance, the excerpt 

types Colors : Enumeration [red, green,blue] 

defines an enumerated type to represent the three basic colors whereas the statement 

c : Colors : = blue; 

declares a variable c of type Colors and initializes the variable to the value blue drawn from the 
Colors set. Note that the expression succ(green) would also initialize c to blue. 

14.3.8 Tuples 

The elements of the data type Tuple[f1 : T1, ..., fn : Tn] are n-tuples with fields f1, . . . , fn of types 
respectively T1, . . . , Tn. Tempo supports the standard notation for selecting a field of a tuple. For 
example if we have a variable p of type Tuple[name: String, age: Int] then p.name denotes the string 
associated with variable p. 

14.3.9 Unions 

Elements of the data type Union[f1 : T1, ..., fn : Tn] represent a value whose type T must be one 
of T1 · · · Tn. It is useful to represent an object whose type is not know a-priori but could be one of 
several alternatives. For instance, the fragment 

MType : Enumeration [DISCOVER,REQUEST,DECLINE,RELEASE,INFORM,OFFER,PACK,NAK], 
OptionValue : Union [s:String, n:Int, m:MType] 

states that OptionValue could be a String, an Int or a MType. To assign an OptionValue variable, one 
must create a value of the union type. The following fragment 

x : OptionValue : = s("Hello"); 
... 
x : = m(DHCPOFFER); 

declares x as as variable of type OptionValue, initializes it with the string “Hello” using the con
structor s (the field name of type String in the Union) and later assigns x to a MType using the m 
constructor. When a Union is declared, Tempo automatically defines an enumeration type 

OptionValue tag : Enumeration [s,n,m] 

that has one value for each constructor of the Union type. Finally, Tempo defines a function tag 

tag : OptionValue OptionValue tag→

that can be used on a variable of type OptionValue to find out the kind of value it currently holds. 
In the example above, a call tag(x) after the second assignment would return m, the third value of 
enumeration OptionValue tag. 
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14.4 Type aliases 

Tempo supports the definition of type aliases that can serve as shorthands when referring to complex 
types. For instance, consider the situation where a specification contains several automata that all 
receive as an argument a value drawn from an enumerated type, e.g., a type representing colors. 
The list of formal arguments of each automaton should define a formal whose type is exactly that 
enumeration. To avoid repetitions, the specification can start with 

types Colors : Enumeration [red,green,blue] 

to globally define Colors as an alias for the enumerated type containing the three primary colors. 
The rest of the specification can, from that point on, refer to the type Colors. More formally, from 
the current typing environment Γ, the type aliasing of n to the type T drawn from the set of static 
types T produces a new typing context Γ� used by the type analysis of the subsequent statements 
and differs from Γ in the following way 

Γ� : Identifiers → T =
Γ�(i) = T ⇔ i = n 
Γ�(i) = Γ(i) ∀i ∈ dom(Γ) : i =� n 

namely, both contexts are identical except for n which now maps to type T . Once a type alias is 
defined, one can write 

automaton A(c : Colors) 

to define an automaton A that expects a value from the Colors type. The type statement can be 
used to specify a comma-separated list of types and appears either in the global scope or within 
vocabularies. Note that, when identical type declarations are repeated, Tempo introduces multiple 
distinct types that are not equal, i.e., Tempo relies on referential equivalence rather than structural 
equivalence for type equality. Type aliases are therefore crucial when multiple automata must refer 
to the same type. 

14.5 User-defined vocabularies 

Users can define abstract data types through the association of types and operations within vo
cabulary definitions. Each vocabulary introduces notations for one or more types (following the 
keyword types or defines) and zero or more operators (following the keyword operators). Each 
operator has a signature that specifies the types of its arguments followed by the symbol (which →
can be typed as ->) and the type of its result. Infix, prefix, postfix, and mixfix operators are named 
by sequences of characters and are defined using placeholders (two underscores) to indicate the 
locations of their arguments. Functions (e.g., in max(a,b)) are denoted by simple identifiers. 

Tempo relies on vocabularies for all its builtin data types. For instance, the Sequence abstract 
data type is specified with 

vocabulary Seq defines Seq[E] 
operators 
∅: →Seq[E], 
� : Seq[E], E →Seq[E], 
� : E, Seq[E] →Seq[E], 
� : Seq[E],Seq[E] →Seq[E], 
∈ : E, Seq[E] →Bool,


head, last: Seq[E] E,
→
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tail, init: Seq[E] Seq[E],

len: Seq[E] Nat

→
,


[ ]: Seq[E],
→
Nat E
→

end 

The vocabulary defines a parametric data type Seq[E] where E is a place-holder for a type parameter. 
The keyword operators is followed by a comma separated list of functions that can use prefix, 
infix, or postfix notation. The function ∅ is a constant function that returns an empty sequence of 
elements of type E. Tempo will infer the actual type to substitute for E based on the context in 
which the function is called. If the context is ambiguous, one can always use a type specifier as in 
∅:Seq[Nat] to tell Tempo that the empty sequence is meant to hold values of type Nat. The second 
operator is an infix append operator. The defines keyword is used when defining parametric types. 
A vocabulary can also introduce type aliases with with the types keyword as in 

vocabulary Col 
types Colors : Enumeration [red,green,blue] 
operators 

makeColor : Nat,Nat,Nat Colors→
end 

Table 14.1 summarizes the ways in which operators can be described in vocabulary definitions and 
then used in various kinds of expressions.


Sample declaration

f: Int -> Int 
min: Int, Int -> Int 
0: -> Int 
__<__: Int, Int -> Bool 
-__: Int, Int -> Int 
__!: Int, Int -> Int 
__[__]: A, Int -> V 
{__}: E -> Set[E] 
{__}: List[E] -> Set[E] 
{}: -> Set[E] 

Form of expression

functional 
functional 
zeroary 
infix 
prefix 
postfix 
mixfix 
mixfix 
mixfix 
mixfix 

if__then__else__: Bool, S, S -> S mixfix 

Sample use

f(i) 
min(i, j) 
0 
i < j 
−i 
i! 
a[i] 
{x}
{x, y, z}
{}
if x < 0 then −x else x 

Table 14.1: Sample operator declarations and use in terms 

Functions that take no arguments can be invoked in one of two ways. Tempo authorizes to simply 
use the function name or to use the function name followed by an empty pair of parenthesis. Given 
the function definition 

let five() : Int =5;→
the following two statements are correct 
x : Int : = five; 
y : Int : = five(); 
and both initialize the variable on the left-hand side with the value returned by the function five. 
The mixfix notation where the operands can appear before, between and after the symbols of the 
operator uses double underscores to indicate the position of each operand and the type of the 
operands are listed in left to right order after the colon. The declaration 
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{ } : List[E] Set[E]→
is particularly interesting. It defines an operator that uses a pair of curly braces and receives its 
operand(s) in between the braces. The type of the operand is List[E], a builtin type of Tempo 
denoting a comma-separated list of values of type E. The operator can receive a list of values of 
type E of arbitrary length. This is particularly convenient to define a set in extension as in 

w : Set[Int] : = {1,2,3,4,5}
Indeed, the curly brace operator is called on a list of 5 integers and therefore produces a set of 
integers that can be assigned to w. Finally, note that the vocabulary also includes an operator 

{ } : E Set[E]→
to build a singleton out of a single value of type E. Clearly, Tempo supports name overloading and 
is capable to disambiguate between the two curly brace operators based on the context. 

14.5.1 Builtin Vocabularies 

Vocabularies play a key role in Tempo itself as all the builtin abstract data types are actually 
defined in vocabularies. For example, the following vocabulary defines the Nat abstract data type. 

vocabulary Nat 
types Nat 
operators 

succ, pred: Nat Nat 
+	 , − , ∗

→
, ∗∗ , min, max, div, mod: Nat, Nat →Nat


< , , > , , = , = : Nat, Nat Bool
≤ ≥ � →
end 

In Tempo, an operator always denotes a total function, even if its values are not known for some 
elements in its domain. Thus, to say that mod(x, 0) is “undefined” means that its value is some 
fixed, but unknown element of Nat; it does not mean that mod is a partial function. 

14.5.2 Parametric Vocabularies 

A vocabulary definition can be parameterized and reused by importing it into other vocabularies, 
as in 

vocabulary Ordering(T: type) 
types T 
operators < , ≤ , > , ≥ , = , =� : T, T →Bool 

end 

vocabulary MyNat 
types MyNat 
imports Ordering(type MyNat) 
operators 

succ, pred: Nat →Nat, + , − , ∗ , ∗∗ , min, max, div, mod: Nat, Nat →Nat 
end 

vocabulary MyReal 
imports Ordering(type Real) 
operators 
− , abs: Real →Real, 
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+ , − , ∗ , ∗∗ , / , min, max: Real, Real →Real,floor: Real →Int 
end 

or into automaton definitions, as in 

automaton Arrange(T: type) 
imports Ordering(type T) 
signature output swap(i, j: Nat) 
states A: Array[Nat, T]; 
transitions output swap(i, j) 

locals temp: T;

pre A[i] < A[j];

eff temp : = A[i]; A[i] : = A[j]; A[j] : = temp;


Import statements can even be used with builtin vocabularies to explicitly import them into a 
specification rather than relying on a declaration to trigger an automatic import. For instance, the 
fragment 

automaton Arrange(T : type) 
imports Set(Int) 
... 

explicitly imports the Set vocabulary and instantiates it with the type Int. A declaration Set[Int] 
would achieve the same result and implicitly load and instantiate the vocabulary. 

14.5.3 Vocabularies with Constructors 

A vocabulary can also introduce a type constructor with the defines keyword. Consider, for in
stance, the builtin Null vocabulary 

vocabulary Null defines Null[T] 
operators


nil : Null[T];

embed 

→
: T →Null[T];


val : Null[T] T;
→
end 

The identifier T in this vocabulary is a type parameter, which is bound to a type any time the 
constructor Null is used to provide operator appropriate for that use. Thus, if x is a variable of 
type Int, then one can write embed(x) to obtain a value of type Null[Int] and the boolean expression 
val(embed(x)) =x is always true. 

14.5.4 User-defined Generic Vocabularies 

To further illustrate user-defined vocabularies, consider the following fragment used to define di
rected graphs. 

vocabulary DirectedGraph(T: type) 
types


Edge : Tuple[src: T, dst: T],

Digraph : Tuple[vset: Set[T], eset: Set[Edge]],

Path : Seq[T]


operators 
connected: T,T Bool,→
addEdge: Digraph, Edge Digraph →

end 
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Here, the type parameter T represents the type of the vertices of a directed graph defined by the 
directedGraphs vocabulary. The vocabulary introduces the types Edge, Digraph, and Path. The type 
Edge is defined as an ordered pair of elements of type T. Digraph is defined as an ordered pair of 
sets —vset is a set of type T and eset is a set of Edge’s—. The operators section introduces two 
functions connected and addEdge. connected takes a pair of elements of type T and returns a boolean. 
addEdge takes a Digraph and an Edge and returns a Digraph. 

If DirectedGraph(Nat) is imported into an automaton, then all the type and operator definitions 
in DirectedGraph are interpreted with T bound to Nat. For example, the initial graph G would be 
an arbitrary graph with a set of natural numbers as vertices, and a set of pairs of natural numbers 
as edges. The automaton updateGraph shown below imports directedGraphs(V), where V is a formal 
type parameter of the automaton which illustrates how to perform abstract operations without 
specifying a concrete type for the digraph. 

automaton updateGraph(V: type) 
imports DirectedGraph(V) 

signature 
input add(e: Edge) 

states 
G: Digraph; 

transitions 
input add(e) 

eff G : = addEdge(G,e); 

Of course, for proving or model-checking properties of the automaton, for simulating it, or for gen
erating executable code from the Tempo specification, it may become necessary to assert properties 
or to provide implementations of the types and operations. For instance, these may take the form of 
axioms stating key properties of the connected function for a theorem prover, Java implementation 
the Digraph of the data type for a code generator. These are provided as appropriate auxiliary files 
to the back-end tools independent of Tempo language. 

14.5.5 Java Code Integration 

To simulate a TIOA specification that relies on user-defined vocabularies, it is necessary to write 
and make available to Tempo a Java implementation of each such vocabulary. For instance, consider 
a TIOA model that uses the following vocabulary 

vocabulary Random 
operators 

randomInt: Int, Int Int,→
randomReal: Real, Real Real,→
chooseRandom: Set[Nat] Nat→

end 

To simulate the model, Tempo will search a Java JAR archive that contains an implementation 
of the Random abstract data type5 . As a starting point, Tempo can generate the skeleton of the 
implementation from the vocabulary definition6 . The Tempo simulator will create a skeleton Java 
for each vocabulary. For the Random vocabulary above, the skeleton will look like 

5Tempo will search in a directory specified at runtime. In Eclipse this setting can be reached in the Simulator 
plugin page through the Preferences menu. 

6To generate the skeleton, refer to the actual tool documentation. The Eclipse user interface has a checkbox option 
within the Simulator Preference. 
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package com . veromodo . tempo . s imu la to r . runtime . voc ; 
public class TempoRandom {

public I n t eg e r chooseRandom fun ( Bas icSet arg0 ) {
//TODO implement f unc t i on body 
return null ; 

}
public I n t eg e r randomInt fun ( In t eg e r arg0 , I n t eg e r arg1 ) {

//TODO implement f unc t i on body 
return null ; 

}
public Double randomReal fun ( Double arg0 , Double arg1 ) {

//TODO implement f unc t i on body 
return null ; 

}
} 

The Vocabulary is implemented by a class that has one method for each function and operator 
defined within the vocabulary. Scalar builtin types are mapped to their natural Java counter
parts whereas type constructor (e.g., Set[Int]) are mapped to Java classes whose nomenclature is 
always BasicXXX where XXX is the name of the type constructor. Note that the Java code uses 
type erasures, i.e., the type parameters are absent from the definition. Hence a Tempo Set[Int] 
becomes a Java BasicSet. Implementation for all the builtin type constructors are provided in a 
builtins.jar Java archive which should be included in order to compile your own definition of 
TempoRandom.java. For reference, a possible implementation is shown below. 

package com . veromodo . tempo . s imu la to r . runtime . voc ;

import java . u t i l . I t e r a t o r ;

import java . u t i l .Random ;

import com . veromodo . tempo . s imu la to r . except ion . SimulatorRuntimeException ;

public class TempoRandom {


private Random gen ;

public TempoRandom( ) { gen = new Random( System . nanoTime ( ) ) ; }

public I n t eg e r chooseRandom fun ( Bas icSet arg0 ) throws SimulatorRuntimeException {


int s i z e = arg0 . g e tS i z e ( ) ;

i f ( s i z e <= 0)


throw new SimulatorRuntimeException ( ” can ’ t
 choose from an empty s e t ! ” ) ; 
int index = gen . next Int ( s i z e ) ; 
I t e r a t o r i t e r = arg0 . i t e r a t o r ( ) ; 
I n t eg e r va l = ( In t eg e r ) i t e r . next ( ) ; 
for ( int x=0; x<index ; x++) 

va l = ( I n t eg e r ) i t e r . next ( ) ;

return va l ;


}
public I n t eg e r randomInt fun ( In t eg e r arg0 , I n t eg e r arg1 ) {


I n t eg e r lowerBound , upperBound ;

i f ( arg0 . compareTo ( arg1 ) < 0){


lowerBound = arg0 ;

upperBound = arg1 ;


} else i f ( arg0 . compareTo ( arg1 ) > 0){

lowerBound = arg1 ;

upperBound = arg0 ;


} else return arg0 ;

return gen . next Int ( upperBound − lowerBound)+lowerBound ;


} 
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public Double randomReal fun ( Double arg0 , Double arg1 ) {
Double lowerBound , upperBound ; 
i f ( arg0 . compareTo ( arg0 ) < 0){

lowerBound = arg0 ; 
upperBound = arg1 ; 

else i f ( arg0 . compareTo ( arg0 ) > 0){} 
lowerBound = arg1 ; 
upperBound = arg0 ; 

} else return arg0 ; 
return gen . nextDouble ()%(upperBound − lowerBound)+lowerBound ; 

}
} 

14.6 Type constraints 

Tempo specifications often use very natural notations to specify construct or initialize variables of 
different types. For instance, the lines 

x : Mset[Int] : = {1,2,3}; 
y : Set[Int] : = {1,2,3}; 
defines x as a multiset of integers initialized with {1, 2, 3} and y as a set of integers initialized 
with {1, 2, 3}. Syntactically, both lines are identical and the initializations use a set notation that 
make the fragment very readable. Semantically though, the two lines are quite different as the first 
one invokes the { } operator of the Mset vocabulary whereas the second invokes the { } operator 
of the Set vocabulary. Clearly, Tempo supports function and operator overloading and its type 
inference engine is often capable to determine the right operator/function based on the type of the 
operands and the expected type of the result. 

In some situation though, the type inference may yield an unexpected result or the construction 
may simply be ambiguous and prevent Tempo from choosing a suitable type for a sub-expression. 
To address this problem, Tempo supports type constraints, i.e., type annotations on sub-expressions 
that dictate the type that a sub-expression should have. For instance, the example above can be 
rewritten 

x : Mset[Int] : = {1,2,3} : Mset[Int]; 
y : Set[Int] : = {1,2,3} : Set[Int]; 
where the sub-expression {1,2,3} is followed by :Set[Int] to require that the sub-expression yield an 
object of type Set[Int]. Generally, a type constraint has the form e:T where e is an expression and T 
is a type. Type constraints can appear deep within an expression as long as proper parenthesizing 
is used. For instance, the type constraint in (3:Real)+5.2 forces the sub-expression 3 to be typed as 
a Real. (Strictly speaking, the type annotation is not necessary in this example as Nat is a sub-type 
of Real and Tempo will automatically promote 3 to Real). 

A type constraint can play a critical role in an expression such as 

x < size({a,b,c,d}) 
where x as well as a, b, c, d are all variables of type Int. Indeed, if Tempo infers that {a,b,c,d}
denotes a set, its cardinality will be anything between 1 and 4. However, if {a,b,c,d} is seen as a 
multiset, its cardinality will be exactly 4. If both operators are available, Tempo will report an 
ambiguity. However, if only one operator is available, Tempo will silently select that one, even if it 
does not correspond to the true intent of the modeler. A type constraint would solve the problem 
and explicitly state the type of the set. A safer fragment would therefore be 
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x < size({a,b,c,d} : Set[Int]) 

14.7 Dynamic Types 

The dynamic type of a variable is declared implicitly; it is inferred automatically from the variable’s 
static type. For variables of all built-in simple types except Real the dynamic type is the set of 
piecewise constant functions from the set of real numbers to the set denoted by the static type of the 
variable. On the other hand, the dynamic type of Real variables is the set of continuous functions 
from the set of real numbers to the set of real numbers. In order to to define a variable that takes 
on real numbered values but is not changed by trajectories one must use the type DiscreteReal. 

If the type of a variable v is defined by one of the type constructors Tuple or Array, then its 
dynamic type dtype(v) is defined as follows. The variable v is viewed as an ordered tuple of variables 
{v1, . . . , vk}, for some finite k. and its static type, type(v), as type(v1)×. . .×type(vk). The dynamic 
type of v is the set of functions f from intervals of time to type(v) such that f.vi ∈ dtype(vi) for 
each i ∈ {1, . . . , k}. 

If the type of v is defined by nesting the type constructors Tuple and Array, then dtype(v) is 
defined recursively using the above rule. Variables of all other compound types and user-defined 
types are considered to be discrete.7 

Consider the following vocabulary definition: 

vocabulary matrix

types

T: Tuple [a: Real, b: Nat, c: DiscreteReal],

Row: Enumeration [p1, p2, p3],

Col: Enumeration [q1, q2, q3],

matrix: Array [Row, Col, Real],

intMatrix: Array [Row, Col, Int]


end 

Suppose that variable v is declared to be of type T. Then dtype(v) is the set of functions f from 
intervals of time to T such that f.a is piecewise continuous with real values, f.b is piecewise constant 
with natural values, and f.c is piecewise constant with real values. The type matrix represents a 
3 × 3 array of real numbers. A variable x declared to be of type matrix can be viewed as an ordered 
9-tuple of reals. The dynamic type of x is the set of functions f from intervals of time to R9 (R 
stands for the set of real numbers) such that the restriction of f on each of the coordinates is a 
piecewise continuous function from intervals of time to reals. A variable y of type intMatrix can be 
viewed as an ordered 9-tuple of integers. And dtype(y) is the set of functions f from intervals of 
time to Z9 (Z stand for the set of integers) such that the restriction of f on each coordinate is a 
piecewise constant. 

7We assume finite maps and sequences to be discrete, regardless of the type of their constituents. We use this 
simple aprroach because we typically use variables of these types to hold values that remain unchanged by time 
passage. The fact that maps can be partially defined and that sequences can shrink and grow over time requires a 
careful definition for dynamic types associated with these types, which is not as straightforward as tuples and arrays. 
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Part III 

Tempo Reference Manual 
This part formally defines the Tempo language, including its grammar. Syntactic categories are 
indicated by italic type, and literal words and characters are indicated by typewriter type. The 
grammar’s meta-syntax is shown in purple. Alternative constructs are separated by |. Optional 
constructs are followed by a ?. Parentheses are used for grouping. A construct followed by a * 
indicates zero or more instances of the construct (Kleene closure), and a construct followed by a + 
indicates one of more instances of the construct (positive closure). 

15 Tempo Programs 

spec ::=(typeDecls | imports | include | funDecls | vocabDef | autoDef | invDef | simDef | simProg)+ ’EOF’ 

A Tempo program consists of one or more of the following, in any order: type declarations, 
import statements, include statements, function declarations, vocabulary definitions, automata 
definitions, invariant definitions, simulation relations, and simulation programs. Vocabulary defi
nitions are discussed in Section 16.2, automata definitions are discussed in Section 17, simulation 
relations are discussed in Section 21, and simulation programs are discussed in Section 20. The 
other constructs are discussed in the remainder of this section. 

15.1 Type Declarations 

typeDecls ::=’types’ typeDecl (, typeDecl)* 
typeDecl ::=ID (: typeRef)? 

Type declarations enable Tempo users to define their own data types or create aliases for existing 
data types. The type declarations begin with the keyword types followed by one or more individual 
type declarations, separated by commas. Each individual type declaration begins with an identifier, 
corresponding to the name of the new data type. For new data types, the identifier is all that is 
needed. For renaming (aliasing) an existing data type, the identifier is followed by a colon and the 
specification of the existing data type (see Section 16.1). More powerful data types are defined 
with vocabularies (see Section 16.2). 

15.2 Import Statements 

imports ::=’imports’ vocabRef (, vocabRef )* 
vocabRef ::=ID (( actual (, actual )* ) )? 
actual ::=(expr | ’Type’ typeRef ) 

An import statement begins with the keyword imports followed by one or more vocabulary 
references, separated by commas. Each vocabulary reference consists of an identifier, correspond
ing to the name of the vocabulary, followed by an optional list of the actual parameters of the 
vocabulary, separated by commas and enclosed in parentheses. An actual parameter is either the 
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keyword Type followed by a data type, if the associated vocabulary formal parameter is a data 
type, or an arbitrary expression. 

Each vocabulary is stored in a file with the same name as the vocabulary. For example, the 
NewVocab vocabulary is stored in a file named NewVocab.tioa. As a result of an import statement, 
the contents of the files for each of the vocabularies in the import list are included in the Tempo 
program, with each vocabulary formal parameter replaced with the corresponding actual parameter, 
as specified. 

15.3 Include Statements 

include ::=’include’ STRING 

An include statement consists of the keyword include and a string corresponding to the name 
of a file. If the file is not in the current directory, the string begins with the relative path to the file 
followed by the file name. The effect of an include statement is to add the text of the named file 
to the Tempo program. In particular, include statements may be used to add automata defined in 
other Tempo programs to the current program. 

15.4 Function Declarations 

funDecls ::=’let’ (funDecl ; )+ 
funDecl ::=ID ( (ID (, ID)* )? ) : typeSignature = expr 
typeSignature ::=typeList? - > typeRef 

The function declarations begin with the keyword let followed by one or more individual 
function declarations, each terminated with a semicolon. A function declaration begins with an 
identifier, corresponding to the name of the function, a left parenthesis, and zero or more identifiers, 
separated by commas, corresponding the names of the function’s formal parameters. These are 
followed by a right parenthesis, a colon, and the type signature of the function. The type signature 
consists of the data types of each of the function’s parameters, separated by commas, followed by 
the symbol -> and the data type of the value returned by the function. A function declaration 
ends with an equals sign (=) and the expression which is evaluated to determine the value of the 
function. The parameter identifiers are local to the function’s expression; their initial values are 
the values of the function’s actual parameters at the time the function is invoked. 

15.5 Invariant Definitions 

invDef ::=’invariant’ idOrNumeral ? ’of’ ID : exprTerminated 
exprTerminated ::=(expr ; )+ 

An invariant definition begins with the keyword invariant followed by an optional identifier or 
integer, which may be used as the name of the invariant. This is followed by the keyword of and an 
identifier, corresponding to the name of the automaton to which this invariant applies. An invariant 
definition ends with a colon and a list of one or more expressions, each ending in a semicolon. Each 
of these expressions should evaluate to true at the end of each transition and trajectory of the 
automaton (but need not evaluate to true in any intermediate states of a transition or trajectory). 
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An interactive theorem-prover, such as PVS, or a model checker, such as Uppaal, may be used to 
check the validity of the invariants. 

15.6 Comments 

The character %, appearing anywhere in a Tempo program, denotes the beginning of a comment. 
The rest of the line after the % is ignored by Tempo. 

16 Data Types and Vocabularies 

16.1 Data Types 

typeRef ::=ID 
| ID [ typeList ] 
| ’Enumeration’ [ idOrNumerals ] 
| ’Tuple’ [ fieldDecls ] 
| ’Union’ [ fieldDecls ] 

fieldDecls ::=fieldDecl (, fieldDecl )* 
fieldDecl ::=ID (, ID )* : typeRef 
typeList ::=typeRef (, typeRef )* 
idOrNumerals ::=idOrNumeral (, idOrNumeral )* 
idOrNumeral ::=(ID | INT ) 

Tempo requires its variables to be declared with explicit data types. For many types of data, 
the data type specification is just an identifier, corresponding to the name of the data type. Data 
types of this form include the primitive data types provided by Tempo (Bool, Nat, Int, Real, 
AugmentedReal, DiscreteReal, Char, and String), and data types defined with a type declaration 
(see Section 15.1). 

Other data type specifications consist of an identifier followed by a list of data type specifi
cations, separated by commas and enclosed in square brackets. Data types of this form include 
the built-in data types of Array, Set, Mset, Map, Seq, and Null, and parameterized data types 
in vocabularies. For Set, Mset, Seq, and Null, the bracketed list consists of a single data type 
specification, corresponding to the data type of the elements of the collection. For Array and Map, 
the bracketed list contains at least two data specifications; the last data type specification is the 
data type of the elements of the collection, and the rest are the data types of the indices used to 
access the elements. 

The data type specification for an enumeration data type consists of the keyword Enumeration 
followed by a list of string or integer constants, separated by commas and enclosed in square 
brackets, corresponding to the set of values available to a variable of this data type. The tuple and 
union data type specifications consist of the keyword Tuple or Union, respectively, followed by a 
list of member declarations, separated by commas and enclosed in square brackets. Each member 
declaration consists of one or more identifiers, separated by commas, followed by a colon and the 
data type associated with those identifiers. For a tuple, the identifiers are the names of the tuple’s 
fields, and for a union, the identifiers are the tag names of the union’s constructors. 

16.2 Vocabulary Definitions 
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vocabDef ::=’vocabulary’ ID formals? defines? importsAndTypes? operators? ’end’

formals ::=( formal (, formal )* )

formal ::=ID (, ID)* : (typeRef | ’Type’ )

defines ::=’defines’ ID [ typeList ]

importsAndTypes ::=(imports | typeDecls )+


A vocabulary definition begins with the keyword vocabulary and an identifier, corresponding 
to the name of the vocabulary. Next is an optional list of the formal parameters of the vocabulary, 
separated by commas and enclosed in parentheses. Each formal parameter consists of an identifier, 
corresponding to the name of the parameter, followed by a colon and its data type or the keyword 
Type. If multiple, adjacent parameters are of the same data type, their identifiers may be separated 
by commas and followed by a single colon and their common data type. These are followed, in 
order, by an optional defines clause, optional import statements and type declarations, optional 
operator declarations, and the keyword end. 

The defines clause consists of the keyword defines, an identifier, corresponding to the name 
of the data type defined by this vocabulary, and a list of data type specifications, separated by 
commas and enclosed in square brackets, corresponding to the data types of the parameters of the 
data type. 

The optional import statements and type declarations of a vocabulary may be intermixed in 
any order. Import statements are discussed in Section 15.2, and type declarations are discussed in 
Section 15.1. 

operators ::=’operators’ opDecl (, opDecl )* 
opDecl ::=rootOpName (, rootOpName )* : typeSignature 
rootOpName ::=’if’ ’then’ ’else’ 

| opName 
| idOrNumeral 

opName ::=prefixSpec | infixSpec | mixfixSpec 
prefixSpec ::=(opSym | ˜ ) | . | ID 
infixSpec ::= (opSym | . ( | ID )| ID ) 
mixfixSpec ::= ? { ( (, )* )? }

| ? [ ( (, )* )? ] 
opSym ::=(OPERATOR | <=> | => | ∧ | ∨ | = | ~= | plainOp ) 
plainOp ::=(< | <= | > | >= | + | - | * | / | ** ) 

The operator declarations begin with the keyword operators followed by one or more groups 
of operator declarations, separated by commas. Each group of operator declarations consists of a 
list of one or more operators, separated by commas, followed by a colon and the type signature 
for those operators. A type signature consists of the data types of each of the operands of the 
operation, separated by commas, followed by the symbol -> and the data type of the result of the 
operation. 

An operator is declared in one of five ways, depending upon its use. The simplest form of 
an operator is an identifier or integer, corresponding to the name of a function to be applied to 
the operands. In all the other forms, the symbol __ is used as a placeholder within the operator 
declaration to represent the location of an operand. The operator may be denoted with a operator 
symbol. All of the Tempo symbols for logical, relational, and arithmetic operations may be used 
as operator symbols. In addition, a vocabulary may define its own operator symbol beginning with 
the character \. 
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A conditional operator consists of the keyword if, a placeholder for an operand, the keyword 
then, a placeholder for a second operand, the keyword else, and a placeholder for a third operand. 
A prefix operator consists of either an operator symbol, a ~, a period, or an identifier, followed by a 
placeholder for an operand. An infix operator consists of two placeholders for operands separated by 
either an operator symbol, a period, or an identifier, or a placeholder for a single operand followed 
by a period and an identifier. Finally, a mixfix operator consists of an optional placeholder for a 
beginning operand, a left brace or left square bracket, zero or more operand placeholders separated 
by commas, and a matching right brace or right square bracket. 

Mixfix operators with square brackets currently may not be used in Tempo expressions other 
than for accessing elements of an array and constructing tuples. Also, vocabulary-defined operator 
symbols currently may not be used as prefix operators. 

17 Automaton Definitions 

autoDef ::=’automaton’ ID ( formals where? )? imports? autoCore

formals ::=( formal (, formal )* )

formal ::=ID (, ID)* : (typeRef | ’Type’ )

where ::=’where’ expr

autoCore ::=(basicAutomaton | composedAutomaton )


The definition of an automaton begins with the keyword automaton and an identifier, corre
sponding to the name of the automaton. Next is an optional list of the formal parameters of the 
automaton, separated by commas and enclosed in parentheses. Each formal parameter consists of 
an identifier, corresponding to the name of the parameter, followed by a colon and its data type or 
the keyword Type. If multiple, adjacent parameters are of the same data type, their identifiers may 
be separated by commas and followed by a single colon and their common data type. The range 
of parameter values may be constrained with an optional where clause, consisting of the keyword 
where followed by a predicate expression. Whenever an instance of a parameterized automaton is 
created, the values of the actual parameters must be such that the where clause expression evaluates 
to true. 

The automaton definition may then contain an optional imports statement, consisting of the 
keyword imports followed by a list of one or more vocabularies to be imported (see Section 15.2). 
The rest of the body of an automaton definition varies depending on whether the automaton is a 
basic automaton or a composite automaton. 

17.1 Basic Automaton Definitions 

basicAutomaton ::=actionSignature? states funDecls? transitions? trajectories? tasks? schedule? 

The body of a basic automaton consists of the following parts, in order: signature, states, 
function declarations, transitions, trajectories, tasks, and schedule. Only the states part is required; 
the rest are optional. Each of the parts is described, in turn, in the following sections. 

17.1.1 Signature 
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actionSignature ::=’signature’ (formalActions )+ 
formalActions ::=’input’ formalAction (, formalAction )* 

| ’output’ formalAction (, formalAction )* 
| ’internal’ formalAction (, formalAction )* 

formalAction ::=ID (( sigFormal (, sigFormal )* ) where? )? 
sigFormal ::=’const’ expr 

| ID (, ID)* : typeRef 

The signature part, if present, begins with the keyword signature. It is followed by a non-
empty list of the signatures of the automaton’s transitions. The signature of each transition begins 
with an identifier, corresponding to the name of the transition, followed by an optional list of the 
transition’s formal parameters, separated by commas and enclosed in parentheses, whose values 
may be constrained by an optional where clause. 

Each transition parameter may be either a constant or a variable. A constant parameter is 
denoted by the keyword const followed by an expression depending only on the values of the 
automaton’s parameters. A variable parameter is denoted by an identifier followed by a colon and 
its data type. If multiple, adjacent parameters are of the same data type, their identifiers may be 
separated by commas and followed by a single colon and their common data type. 

As in an automaton definition, a where clause consists of the keyword where followed by a 
predicate expression which constrains the range of acceptable parameter values. The values of 
the actual parameters must be such that the predicate expression evaluates to true. Typically, 
a signature where clause specifies the sets of values from which the actual parameter values are 
drawn. 

Each transition signature must be preceded by a keyword denoting the type of the transition, 
namely input, output, or internal. Multiple transitions of the same type may be grouped together 
with a single instance of the word describing the type of the transitions followed by each of the 
transition signatures, separated by commas. 

The following example illustrates many of the options for a basic automaton signature: 

automaton channel (i:Int) 
signature 

input send (m:Msgs, const i, j:Int) where j ∈ Nodes, 
fail 

output receive (m:Msgs, j:Int, const i) where j ∈ Nodes 

17.1.2 States 

states ::=’states’ (state ; )+ initially? 
| ’states’ 

state ::=ID : typeRef (:= value )? 
initially ::=’initially’ expr ; 

The states part of a basic automaton declares the automaton’s state variables. It begins with 
the keyword states followed by zero or more state variable declarations and an optional initially 
expression. 

Each state variable declaration consists of an identifier, corresponding to the name of the vari
able, followed by a colon and the data type of the variable. Optionally, the data type may be 
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followed by the assignment operator := and an initial value for the variable. Each state variable 
declaration ends with a semicolon. The scope of a state variable declaration is the body of the 
automaton. 

The initially expression, if present, begins with the keyword initially followed by a predicate 
expression. The initial values of the state variables must be selected in such a way so that the 
predicate expression evaluates to true. In particular, an initially expression restricts the values of 
variables initialized with a choose operator. 

17.1.3 Function Declarations 

Function declarations within an automaton definition are identical to function definitions outside 
of an automaton definition (see Section 15.4), except the scope of the functions is limited to the 
body of the automaton. 

17.1.4 Transitions 

transitions ::=’transitions’ (transition )+ 
transition ::=’input’ transitionCore 

| ’output’ transitionCore 
| ’internal’ transitionCore 

transitionCore ::=ID (( actionActuals ) where? )? localVars? funDecls? precondition? urgency? effect? 
actionActuals ::=expr (, expr )* 
localVars ::=’locals’ (localDecl ; )+ 
precondition ::=’pre’ exprTerminated 
urgency ::=’urgent’ ’when’ expr ; 
effect ::=’eff’ effProgram (’ensuring’ expr ; )? 
localDecl ::=ID : typeRef (:= value )? 
exprTerminated ::=(expr ; )+ 
effProgram ::=effStmt+ 
effStmt ::=lvalue := value ; 

| ’print’ value ; 
| ’if’ effCondRec ’fi’ 
| ’while’ expr ’do’ effProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ effProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ effProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ effProgram ’od’ 

effCondRec 
| ; 
::=expr ’then’ effProgram (’elseif’ effCondRec | ’else’ effProgram ) 

The transitions part of an automaton definition, if present, consists of the keyword transitions 
followed by one or more transition definitions. Each transition definition begins with a keyword 
describing the type of the transition, namely input, output, or internal, and an identifier corre
sponding to the name of the transition. Next is an optional list of transition parameter expressions, 
separated by commas and enclosed in parentheses, possibly followed by the keyword where and a 
predicate expression constraining the set of parameter values. Since an automaton may contain 
more than one transition definition with the same name, the where clauses use the actual parameter 
values to determine which transition definition is applicable. A transition definition requires the 
actual parameter values to be such that its where clause expression evaluates to true. 
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The body of a transition definition consists of the following five optional parts, in order: local 
variable declarations, function declarations, a precondition, an urgency condition, and an effect. 
An input transition may not have a precondition or an urgency condition. 

The local variable declarations, if any, begin with the keyword locals followed by one or more 
local variable declarations. Each local variable declaration begins with an identifier, corresponding 
to the name of the variable, followed by a colon and the data type of the variable. Optionally, 
the data type may be followed by the assignment operator := and an initial value for the variable. 
Each local variable declaration ends with a semicolon. The scope of a local variable declaration is 
the body of the transition. 

Function declarations within a transition definition, if any, are identical to function definitions 
outside of an automaton (see Section 15.4), except the scope of the functions is limited to the body 
of the transition. 

The transition precondition, if any, begins with the keyword pre followed by one or more 
expressions, each ending with a semicolon. In order for the transition to be enabled, each of the 
expressions in the precondition must evaluate to true. 

The urgency condition, if any, begins with the keywords urgent when followed by a predicate 
expression and a semicolon. Whenever the predicate expression evaluates to true, the currently 
executing trajectory must stop and an enabled transition must be fired. However, the transition 
that is fired need not be the transition with the true urgency condition. 

The transition effect, if any, begins with the keyword eff followed by one or more statements 
specifying the behavior of the transition and an optional ensuring clause. The transition’s effect 
statements are executed sequentially when the transition is fired. Statement types that are valid in 
a transition effect are assignment statements, print statements, if statements, while statements, for 
statements, and empty statements. An ensuring clause consists of the keyword ensuring followed 
by a predicate expression and ending with a semicolon. The ensuring expression must evaluate 
to true after the transition has fired, and thus may be used to restrict the nondetermistic values 
selected by choose operators in the effect statements. 

17.1.5 Trajectories 

trajectories ::=’trajectories’ (trajectory )+

trajectory ::=’trajdef’ ID (formals where? )? funDecls? trajInvariant? stopCond? evolve?

trajInvariant ::=’invariant’ exprTerminated

stopCond ::=’stop’ ’when’ expr ;

evolve ::=’evolve’ exprTerminated

exprTerminated ::=(expr ; )+


The trajectories part of an automaton definition, if present, consists of the keyword 
trajectories followed by one or more trajectory definitions. Each trajectory definition begins 
with the keyword trajdef followed by an identifier corresponding to the name of the trajectory. 
Next is an optional list of the formal parameters of the trajectory, separated by commas and en
closed in parentheses. Each formal parameter consists of an identifier, corresponding to the name 
of the parameter, followed by a colon and its data type or the keyword Type. If multiple, adjacent 
parameters are of the same data type, their identifiers may be separated by commas and followed 
by a single colon and their common data type. The range of parameter values may be constrained 
with an optional where clause, consisting of the keyword where followed by a predicate expression. 
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In order for the trajectory to be followed, the values of the actual parameters must be such that 
the where clause expression evaluates to true. 

The body of the trajectory consists of four optional parts, namely function definitions, trajectory 
invariants, a stop condition, and evolve expressions. Function declarations within a trajectory 
definition, if any, are identical to function definitions outside of an automaton (see Section 15.4), 
except the scope of the functions is limited to the body of the trajectory. 

The trajectory invariants, if any, begin with the keyword invariant followed by one or more 
predicate expressions, each ending in a semicolon. All of the trajectory invariant expressions must 
evaluate to true before the trajectory can begin to be followed, and they must remain true for the 
duration of the trajectory. 

The stop condition, if any, consists of the keywords stop when followed by a predicate expression 
and a semicolon. The trajectory must stop as soon as the expression evaluates to true. 

The evolve expressions, if any, consist of the keyword evolve followed by one or more expres
sions, each ending in a semicolon. The expressions specify how the values of the automaton’s analog 
variables change with respect to time during the trajectory. Because of their unique role, these 
expressions are not arbitrary expressions, but instead are specialized expressions of the following 
form: 

evolveExpr ::=evolveLHS (= | < | <= | > | >= )expr 
evolveLHS ::=(ID . )* ID | ’d’( (ID . )* ID ) | 

The left-hand side of each evolve expression must be either the identifier of a variable of type Real 
or AugmentedReal or the keyword d, denoting the derivative function with respect to time, followed 
by the identifier of a variable of type Real or AugmentedReal, enclosed in parentheses. Within a 
composite automaton (see Section 17.2), the identifier of the evolve variable may be preceded by 
the identifier(s) for its component automaton. The left-hand side is followed by any relational 
operator except not equal (~=) and an expression. Note that the derivative function cannot be part 
of the expression; it may be used only on the left-hand side of an evolve expression. Any analog 
variable whose behavior is not explicitly constrained by the evolve expressions is allowed to change 
arbitrarily during the trajectory. The automaton’s discrete variables remain constant during the 
trajectory. 

17.1.6 Tasks 

tasks ::=’tasks’ (task )+

task ::={ actionSet (, actionSet )* } forClause?

actionSet ::=(compInstance . )? ID (( expr (, expr)* ) where? )?

forClause ::=’for’ varList (, varList)* where?

varList ::=ID (, ID )* : typeRef


The tasks part of an automaton definition, if present, begins with the keyword tasks followed 
by one or more task lists. Each task list consists of one or more of the automaton’s transitions, 
separated by commas and enclosed in braces, possibly followed by a for clause. The individual 
transition specifications begin with the name of the component in which the transition is located, 
for composite automata, and an identifier corresponding to the name of the transition. These are 
followed by expressions for each of the transition’s parameters, if any, separated by commas and 
enclosed in parentheses, and an optional where clause. The where clause begins with the keyword 
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where followed by a predicate expression; the transition is included in the task list only when the 
where clause expression evaluates to true. 

The optional for clause consists of the keyword for followed by one or more variable declarations, 
separated by commas, and an optional where clause. Each variable declaration consists of an 
identifier, corresponding to the name of the variable, followed by a colon and its data type. If 
multiple, adjacent variables are of the same type, their identifiers may be separated by commas 
and followed by a single colon and their common data type. The variables in the for clause may be 
used in the transition parameter expressions, with their values constrained by the where clause, if 
present. 

None of the Tempo tools currently take advantage of task definitions. 

17.1.7 Schedule 

schedule ::=’schedule’ states? ’do’ basicProgram? ’od’ 
states ::=’states’ (state ; )+ initially? 

| ’states’ 
state ::=ID : typeRef (:= value )? 
basicProgram ::=basicStatement+ 
basicStatement ::=lvalue := value ; 

| ’print’ value ;

| ’if’ basicCondRec ’fi’

| ’while’ expr ’do’ basicProgram ’od’

| ’for’ ID ’in’ expr ’do’ basicProgram ’od’

| ’for’ ID : typeRef ’in’ expr ’do’ basicProgram ’od’

| ’for’ ID : typeRef ’where’ expr ’do’ basicProgram ’od’

| ’fire’ ;

| ’fire’ ’input’ ID (( expr (, expr)* ) )? ;

| ’fire’ ’output’ ID (( expr (, expr)* ) )? ;

| ’fire’ ’internal’ ID (( expr (, expr)* ) )? ;

| ’follow’ ID ’duration’ expr ;

| ; 

basicCondRec ::=expr ’then’ basicProgram (’elseif’ basicCondRec | ’else’ basicProgram )? 

The schedule part of a basic automaton, if present, specifies the behavior of the automaton 
during simulation. It begins with the keyword schedule followed by optional variable declarations, 
the keyword do, zero or more statements, and the keyword od. The variable declarations begin 
with the keyword states and are the same as those in the states part of an automaton definition 
(see Section 17.1.2) except the scope of the variables is limited to the automaton’s schedule. 

The schedule’s statements are executed sequentially when the automaton is run in a simulation. 
Statement types that are valid in a schedule are assignment statements, print statements, if state
ments, while statements, for statements, fire statements, follow statements, and empty statements. 

17.2 Composite Automaton Definitions 

composedAutomaton ::=components hiddenActionSets? compSchedule? 

The body of a composite automaton consists of a list of the component automata followed by 
an optional list of hidden actions and an optional schedule. 

97 



17.2.1 Components 

components ::=’components’ (component ; )+

component ::=ID ([ varList (, varList )* ] )? (: componentDef)? where?

varList ::=ID (, ID )* : typeRef

componentDef ::=ID (( actual (, actual)* ) )?


The list of component automata begins with the keyword components followed by one or more 
component specifications, each ending with a semicolon. A component specification begins with 
an identifier, corresponding to the local name of the component within the automaton, and a list 
of its parameters, if any, separated by commas and enclosed in square brackets. Each parameter 
specification consists of an identifier, corresponding to the local name of the parameter, followed 
by a colon and its data type. If multiple, adjacent parameters are of the same data type, their 
identifiers may be separated by commas and followed by a single colon and their common data type. 
After the component name and parameters, there is an optional component designation, consisting 
of a colon, a second identifier, and a list of actual parameters, and an optional where clause. 

If a component designation is present, its identifier specifies the name of the automaton, de
fined elsewhere, for which this component is an instance. If that automaton is parameterized, the 
automaton name is followed by a list of expressions for the values of the actual parameters for this 
instance, separated by commas and enclosed in parentheses. If a component designation is not 
specified, the local name of the component is the same as the name of the automaton for which it 
is an instance. 

If the local name of the component is followed by a list of parameters, a separate component 
is created for each set of values in the parameter domains. Within the body of the composite 
automaton, each individual component is identified by its local name followed by expressions for 
the actual values of its parameters, separated by commas and enclosed in square brackets. 

The optional where clause restricts the set of acceptable parameter values, and thus limits the 
number of components generated. The where clause begins with the keyword where followed by a 
predicate expression. The expression must evaluate to true for each component generated. 

17.2.2 Hidden Actions 

hiddenActionSets ::=’hidden’ (actionSet ; )+

actionSet ::=(compInstance . )? ID (( expr (, expr)* ) where? )?


Within a composite automaton, the output transitions of the components are linked, to the 
extent possible, to input transitions of the same name in other components, and the combined 
transitions are performed as a single action. In order to reclassify these actions as internal transi
tions of the composite automaton, rather than leaving them as output transitions, it is necessary 
to hide them. 

The list of hidden actions, if any, begins with the keyword hidden followed by one or more 
actions, each ending in a semicolon. Each hidden action is specified by the name of the component 
in which the action is located, if needed, and an identifier corresponding to the name of the action. 
These are followed by the action’s parameters, if any, separated by commas and enclosed in paren
theses, and an optional where clause. The where clause consists of the keyword where followed by 
a predicate expression; the action is hidden only when the where expression evaluates to true. 
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17.2.3 Schedule 

compSchedule ::=’schedule’ states? ’do’ compProgram? ’od’ 
states ::=’states’ (state ; )+ initially? 

| ’states’ 
state ::=ID : typeRef (:= value )? 
compProgram ::=compStmt+ 
compStmt ::=lvalue := value ; 

| ’print’ value ; 
| ’if’ compCondRed ’fi’ 
| ’while’ expr ’do’ compProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ compProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ compProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ compProgram ’od’ 
| ’fire’ ’input’ compInstance . ID (( expr (, expr)* ) )? ; 
| ’fire’ ’output’ compInstance . ID (( expr (, expr)* ) )? ; 
| ’fire’ ’internal’ compInstance . ID (( expr (, expr)* ) )? ; 
| ’follow’ compTrajList ’duration’ expr ; 
| ; 

compCondRec ::=expr ’then’ compProgram (’elseif’ compCondRec | ’else’ compProgram )? 
compInstance ::=ID ([ expr (, expr)* ] )? (. ID ([ expr (, expr)* ] )? )* 
compTrajList ::=componentTrajectory (, componentTrajectory )* 
componentTrajectory ::=compInstance . ID (( expr (, expr)* ) )? 

The schedule part of a composite automaton, if present, specifies the behavior of the automaton 
during simulation. It begins with the keyword schedule followed by optional variable declarations, 
an optional with block, the keyword do, zero or more statements, and the keyword od. The 
variable declarations begin with the keyword states and are the same as those in the states part 
of an automaton definition (see Section 17.1.2) except the scope of the variables is limited to the 
composite automaton schedule. 

The schedule’s statements are executed sequentially when the automaton is run in a simulation. 
Statement types that are valid in a schedule are assignment statements, print statements, if state
ments, while statements, for statements, fire statements, follow statements, and empty statements. 
A composite automaton’s fire statements identify the transition to be fired by specifying the name 
of the component in which the transition is located, the parameters of that component if any, a 
period, the name of the transition within the component, and the parameters of the transition 
if any. The follow statements optionally specify a list of trajectories to be concurrently followed, 
separated by commas; each trajectory to be followed is identified by specifying the name of the 
component in which the trajectory is located, the parameters of that component if any, a period, 
the name of the trajectory within the component, and the parameters of the trajectory if any. For 
both the fire and follow statements, if the component automaton is itself a composite automaton, 
the component name consists of a sequence of identifiers for the local component names followed 
by their parameters if any, each separated by a period, to the level of composite nesting. Note 
that the parameters of a local component are enclosed in brackets, whereas the parameters of a 
transition or a trajectory are enclosed in parentheses. 
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18 Expressions 

A Tempo expression may take on many forms, as described in the following sections. 

18.1 Conditional Expressions 

expr ::=’if’ expr ’then’ expr ’else’ expr 

A conditional expression consists of the keyword if, an expression, the keyword then, a second 
expression, the keyword else, and a third expression. If the first expression evaluates to true, the 
value of the conditional expression is the value of the second expression. Otherwise, the value of 
the conditional expression is the value of the third expression. 

18.2 Logical Expressions 

expr ::=expr (<=> expr )+ 
| expr (=> expr )+ 
| expr (∨ expr )+ 
| expr (∧ expr )+ 
| ˜ expr 

A logical expression consists of two or more expressions separated by logical operators or a 
single expression preceded by a ~. The value of a logical expression is a Boolean value. For two 
expressions separated by a logical operator, the value of the resulting expression is the equivalence 
of the two expressions for <=>, the implication of the second expression from the first expression 
for =>, the disjunction (or) of the two expressions for \/, and the conjunction (and) of the two 
expressions for /\. A ~ preceding an expression negates the value of the expression. All logical 
operators group left to right. 

18.3 Relational Expressions 

expr ::=expr (= expr | ~= expr )+ 
| expr (< expr | > expr | <= expr | >= expr)+ 

A relational expression consists of two or more expressions separated by relational operators. 
The value of the resulting expression is a Boolean value. For two expressions separated by a 
relational operator, the value of the resulting expression is true if the indicated relationship holds 
between the values of the two expressions, and false otherwise. All relational operators group left 
to right. 

18.4 Arithmetic Expressions 

expr ::=expr (+ expr | - expr | * expr | / expr | ** expr )+ 
| - expr 
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An arithmetic expression consists of two or more expressions separated by arithmetic operators 
or a single expression preceded by a -. For two expressions separated by an arithmetic operator, 
the value of the resulting arithmetic expression is the sum of the two expressions for +, the first 
expression minus the second expression for -, the product of the two expressions for *, the first 
expression divided by the second expression for /, and the first expression raised to the power of 
the second expression for **. A - preceding an expression negates the value of the expression. All 
the arithmetic operators except exponentiation group left to right; exponentiation groups right to 
left. 

18.5 Expressions with Vocabulary-Defined Operator Symbols 

expr ::=expr (OPERATOR expr )+ 

An expression may consist of two or more expressions separated by vocabulary-defined operator 
symbols. For two expressions separated by a vocabulary-defined operator symbol, the value of 
the resulting expression is the vocabulary-defined result of applying the operator to the left and 
right expressions. Vocabulary-defined operator symbols have the same precedence as addition and 
subtraction and group left to right. 

18.6 Quantification Expressions 

expr ::=(\A | \E )ID (: type | ’in’ expr )expr 

A quantification expression begins with either the universal quantification operator (denoted 
\A) or the existential quantification operator (denoted \E) and an identifier, corresponding to the 
name of the quantification variable. Next is either a data type specification for the quantification 
variable, consisting of a colon followed by the data type of the variable, or the keyword in followed 
by an expression for the domain set of the quantification variable. A quantification expression ends 
with the expression to be quantified. Note that unless the expression to be quantified is a single 
variable identifier or function invocation, it must be enclosed in parentheses. 

The value of a universal quantification expression is true if the quantified expression evaluates to 
true for every value of the quantification variable, and false otherwise. The value of an existential 
quantification expression is true if the quantified expression evaluates to true for at least one value 
of the quantification variable, and false otherwise. 

18.7 Constant Array Constructors 

expr ::=’constant’ ( expr ) 

A constant array constructor consists of the keyword constant followed by an arbitrary ex
pression enclosed in parentheses. The value of the expression is a new array with the value of each 
element of the array initialized to the value of the parenthesized expression. The dimension of the 
array is inferred from the context of the expression. 
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18.8 Tuple Constructors 

expr ::=[ expr (, expr)* ] 

A tuple constructor consists of a list of one or more expressions, separated by commas and 
enclosed in square brackets. The value of the expression is a new tuple which has one field for each 
expression in the list. The initial values of the fields are the values of the associated expressions. 

18.9 Set Constructors 

expr ::={ ID : type ’where’ expr } | { (expr (, expr)* )? } 

Tempo provides two forms of set constructor expressions. The first begins with a left brace, an 
identifier, a colon, and a data type. The identifier is the name of a variable of the specified data 
type whose scope is local to the set constructor expression. These are followed by the keyword 
where, a predicate expression, and a right brace. The elements of the new set are all the values of 
the variable for which the predicate expression evaluates to true. 

The second form of a set constructor expression consists of a left brace, a list of zero or more 
expressions separated by commas, and a right brace. The value of the expression is a new set with 
one element for each expression in the list. The value of each element is the value of the associated 
expression. An expression for the empty set consists of a left brace followed by a right brace. 

18.10 Expressions with Vocabulary-Defined Mixfix Operators 

expr ::=expr { (expr (, expr)* )? } 

An expression with a vocabulary-defined mixfix operator consists of a beginning expression, a 
left brace, zero or more expressions separated by commas, and a right brace. The value of the 
expression is defined by the vocabulary. 

18.11 Type Constraints 

expr ::=expr : type 

A type constraint consists of an expression followed by a colon and a data type. It is used to 
specify the data type of the expression if the type of the expression is not clear from its context. 

18.12 Tuple, Union, and Array Elements 

expr ::=expr (. ID | [ expr (, expr)* ] )+ 

An expression for the value of the field of a tuple consists of an expression for the tuple followed 
by a period and an identifier corresponding to the name of the field within the tuple. 

An expression for the value of a union element is restricted to one of the union’s data types 
by following the expression for the union element with a period and the identifier corresponding to 
the name of the constructor for the element’s data type. 
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An expression for the value of an array element consists of an expression for the array followed 
by one or more expressions, separated by commas and enclosed in square brackets, whose values 
are the indices of the element within the array. 

18.13 Cast Operations 

expr ::=( type ) expr 

A cast operation consists of a data type, enclosed in parentheses, followed by an expression. 
The cast operation converts the value of the expression to a value of the specified data type. As a 
result, some information may be lost, e.g., the value of (Int)5.6 is 5. 

18.14 Function Invocations 

expr ::=ID ( (expr (, expr)* )? ) 

A function invocation consists of an identifier, corresponding to the name of the function, a left 
parentheses, zero or more expressions separated by commas, corresponding to the actual parameters 
of the function, and a right parenthesis. The value of a function invocation is the value returned by 
the function of that name when its formal parameters are replaced by the values of the expressions 
for the actual parameters. 

18.15 Basic Expressions 

expr ::=(INT | FLOAT | STRING | ’true’ | ’false’ | ( expr ) | ID | ID’ ) 

A basic expression is a constant, an arbitrary expression enclosed in parentheses, or an identifier. 
A constant is either an integer, consisting of one or more digits, a floating point number, consisting 
or one or more digits followed by a period and one or more digits, or a string, consisting of zero or 
more characters enclosed in quotation marks ("). 

The value of an expression enclosed in parentheses is the same as the value of the expression 
within the parentheses. Parentheses allow operations to be grouped in a different order than the 
order dictated by precedence. 

The value of an identifier, when it is a basic expression, is the value of the state or local variable 
of that name within the current scope. In an ensuring clause, an identifier may be followed by an 
apostrophe; in that case the value of the expression is the value of the state or local variable after 
the transition is performed. 

18.16 Values 

value ::=(expr | choice ) 

A value is either an arbitrary expression or a choose operator. It is used to specify a new value 
for a variable in an assignment statement or to specify the value to be printed in a print statement. 
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18.17 Choose Operators 

choice ::=’choose’ (variable where? )? choiceNDR?

variable ::=ID (: typeRef )?

choiceNDR ::=’det’ ’do’ ndrProgram? ’od’


| yield expr 

A choose operator begins with the keyword choose, followed by an optional constraint on the 
value chosen and an optional specification of the manner in which the value is chosen during a 
simulation. If a choose operator consists only of the keyword choose, its value is arbitrary and 
nondeterministic. 

The value chosen may be limited to a value within a data type or to a value that satisfies a 
condition or both. The constraint specification, if any, begins with an identifier, corresponding to 
the name of a variable, local to the choose operator, whose value will be the value of the choose 
operator. The variable name may be followed by a colon and the data type of the variable. The 
constraint specification ends with an optional where clause, consisting of the keyword where and a 
predicate expression; the value chosen for the variable must be such that the predicate expression 
evaluates to true. 

The value of a choose operator during a simulation may be specified in two ways. First, the 
value may be specified explicitly with the keyword yield and an expression whose value is the value 
of the choose operator. Second, a program may be provided to calculate the value of the choose 
operator. This is specified with the keywords det do followed by a nondeterminism resolution 
program and the keyword od. 

18.18 Nondeterminism Resolution Programs 

ndrProgram ::=ndrStatement+ 
ndrStatement ::=lvalue := value ; 

| ’print’ value ; 
| ’if’ ndrCondRef ’fi’ 
| ’while’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ ndrProgram ’od’ 
| ’yield’ expr ; 
| ; 

ndrCondRec ::=expr ’then’ ndrProgram (’elseif’ ndrCondRec |’else’ ndrProgram )? 

A nondeterminism resolution program is a group of one or more statements, where valid state
ment types are assignment statements, print statements, if statements, while statements, for state
ments, yield statements, and empty statements. The first time a nondeterminism resolution pro
gram is executed, it begins execution with its first statement. Subsequent statements are executed 
sequentially until a yield statement is executed. At that time, execution of the program stops, and 
the value of the yield statement becomes the value of the associated choose operator. The next 
time the program is executed, it begins execution with the statement immediately following the 
yield statement where it stopped, and it continues executing sequential statements until the next 
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yield statement is executed. After the last statement in a nondeterminism resolution program is 
executed, execution continues with the first statement of the program. 

19 Statements 

effProgram ::=effStmt+ 
basicProgram ::=basicStatement+ 
compProgram ::=compStmt+ 
simulateProgram ::=simulateStmt+ 
ndrProgram ::=ndrStatement+ 
simProofProgram ::=simProofStmt+ 

Statements may appear in many places within a Tempo program. These places include transition 
effects, basic and composite automata schedules, simulation blocks, nondeterminism resolution 
programs, and simulation proofs. The Tempo grammar contains separate constructs for the valid 
statements in each of these locations. However, the form of each of the statement types is the same, 
regardless of the location. The discussions of the various statement types are combined by type 
and presented in the following sections. 

19.1 Assignment Statements 

effStmt ::=lvalue := value ; 
basicStatement ::=lvalue := value ; 
compStmt ::=lvalue := value ; 
simulateStmt ::=lvalue := value ; 
ndrStatement ::=lvalue := value ; 
simProofStmt ::=lvalue := value ; 

lvalue ::=ID ([ expr (, expr)* ] | . ID )* 
value ::=(expr | choice ) 

An assignment statement changes the value of a state or local variable. The statement consists 
of the name of the state or variable to be changed, the assignment operator :=, the new value, and 
a semicolon. For primitive data types and complete objects of complex data types, the name of the 
state or local variable is just its identifier. For an element of an array, the name is the identifier 
of the array followed by one or more expressions, separated by commas and enclosed in square 
brackets, which evaluate to the indices of the element within the array. For a field of a tuple, the 
name is the identifier of the tuple, followed by a period and the identifier of the field within the 
tuple. Since an element of an array may be a tuple or another array and since a field of a tuple 
may be an array or another tuple, the array indices and tuple fields may be combined in any order 
and to any depth in order to specify the particular value to be changed. 

The new value is specified with either an expression or a choose operator. The new value must 
be of the same data type as the state or local variable to be changed or a subtype of that data 
type. 
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19.2 Print Statements 

effStmt ::=’print’ value ; 
basicStatement ::=’print’ value ; 
compStmt ::=’print’ value ; 
simulateStmt ::=’print’ value ; 
ndrStatement ::=’print’ value ; 
simProofStmt ::=’print’ value ; 

A print statement consists of the keyword print followed by either an expression or a choose 
operator and then a semicolon. The effect of a print statement is to print the value of the expression 
or choose operator on the standard output device. 

19.3 If Statements 

effStmt ::=’if’ effCondRec ’fi’

effCondRec ::=expr ’then’ effProgram (’elseif’ effCondRec | ’else’ effProgram )?


basicStatement ::=’if’ basicCondRec ’fi’

basicCondRec ::=expr ’then’ basicProgram (’elseif’ basicCondRec | ’else’ basicProgram )?


compStmt ::=’if’ compCondRed ’fi’

compCondRec ::=expr ’then’ compProgram (’elseif’ compCondRec | ’else’ compProgram )?


simulateStmt ::=’if’ simCondRec ’fi’

simCondRec ::=expr ’then’ simulateProgram (’elseif’ simCondRec | ’else’ simulateProgram )?


ndrStatement ::=’if’ ndrCondRef ’fi’

ndrCondRec ::=expr ’then’ ndrProgram (’elseif’ ndrCondRec |’else’ ndrProgram )?


simProofStmt ::=’if’ proofCondRec ’fi’

proofCondRec ::=expr ’then’ simProofProgram (’elseif’ proofCondRec |’else’ simProofProgram )?


An if statement selects from among one or more groups of instructions the particular group 
of instructions, if any, to be executed. The if statement begins with the keyword if followed by 
a predicate expression, the keyword then, and a group of one or more statements. Next are zero 
or more occurrences of the keyword elseif followed by another predicate expression, the keyword 
then, and another group of statements. These optionally may be followed by the keyword else 
and a group of statements. An if statement ends with the keyword fi. 

The effect of executing an if statement is to execute the group of statements immediately 
following the first predicate expression that evaluates to true, or if none of the predicate expressions 
evaluate to true, to execute the group of statements following the else. If there is no else and 
none of the predicate expressions evaluate to true, no group of statements are executed as a result 
of the if statement. 

19.4 While Statements 
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effStmt ::=’while’ expr ’do’ effProgram ’od’ 
basicStatement ::=’while’ expr ’do’ basicProgram ’od’ 
compStmt ::=’while’ expr ’do’ compProgram ’od’ 
simulateStmt ::=’while’ expr ’do’ simulateProgram ’od’ 
ndrStatement ::=’while’ expr ’do’ ndrProgram ’od’ 
simProofStmt ::=’while’ expr ’do’ simProofProgram ’od’ 

A while statement repeatedly executes a group of statements as long as a specified condition is 
satisfied. The while statement begins with the keyword while followed by a predicate expression, 
the keyword do, one or more statements, and the keyword od. The predicate expression is evaluated, 
and if it evaluates to true, the group of statements between the do and od are executed sequentially. 
The predicate expression is then reevaluated. The group of statements are repeatedly executed and 
the predicate expression is reevaluated until expression evaluates to false. 

19.5 For Statements 

effStmt ::=’for’ ID ’in’ expr ’do’ effProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ effProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ effProgram ’od’ 

basicStatement ::=’for’ ID ’in’ expr ’do’ basicProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ basicProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ basicProgram ’od’ 

compStmt ::=’for’ ID ’in’ expr ’do’ compProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ compProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ compProgram ’od’ 

simulateStmt ::=’for’ ID ’in’ expr ’do’ simulateProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ simulateProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ simulateProgram ’od’ 

ndrStatement ::=’for’ ID ’in’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ ndrProgram ’od’ 

simProofStmt ::=’for’ ID ’in’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ simProofProgram ’od’ 

A for statement executes a group of statements once for each value of a variable that satisfies a 
condition. The for statement begins with the keyword for, an identifier for the iteration variable, 
a colon, and the data type of the variable. These are followed by the condition to be satisfied, the 
keyword do, one or more statements, and the keyword od. 

The condition to be satisfied may be specified in two ways. The first consists of the keyword 
in followed by an expression for a collection. The iteration variable is assigned to each member 
of the collection, in turn, and the group of statements are executed with each value. The order in 
which the elements of the collection are assigned to the variable is not specified. If the data type 
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of the variable can be determined from the data type of the collection, the colon and data type of 
the variable may be omitted from the for statement. 

The second variation for the condition to be satisfied consists of the keyword where followed 
by a predicate expression. The expression is evaluated, and if it evaluates to true, the group of 
statements are executed. The predicate expression is repeatedly evaluated and the statements are 
executed until the expression evaluates to false. 

19.6 Fire Statements 

basicStatement ::=’fire’ ; 
| ’fire’ ’input’ ID (( expr (, expr)* ) )? ; 
| ’fire’ ’output’ ID (( expr (, expr)* ) )? ; 
| ’fire’ ’internal’ ID (( expr (, expr)* ) )? ; 

compStmt ::=’fire’ ’input’ compInstance . ID (( expr (, expr)* ) )? ; 
| ’fire’ ’output’ compInstance . ID (( expr (, expr)* ) )? ; 
| ’fire’ ’internal’ compInstance . ID (( expr (, expr)* ) )? ; 

compInstance ::=ID ([ expr (, expr)* ] )? (. ID ([ expr (, expr)* ] )? )* 

simProofStmt ::=’fire’ msgInvoke (’using’ proofUsings)? ; 
msgInvoke ::=’input’ (compInstance . )? ID (( expr (, expr)* ) )? 

| ’output’ (compInstance . )? ID (( expr (, expr)* ) )? 
| ’internal’ (compInstance . )? ID (( expr (, expr)* ) )? 

proofUsings ::=expr ’for’ ID (, expr ’for’ ID)* 

A fire statement causes a transition to be fired in a simulation run. The fire statement consists 
of the keyword fire followed by the keyword for the type of the transition to be fired (input, 
output, or internal), the name of the transition, expressions for its actual parameters, if any, 
separated by commas and enclosed in parentheses, and a semicolon. For schedules and simulation 
relation proofs for basic automata, the name of the transition is its identifier. For schedules and 
simulation relation proofs for composite automata, the name of the transition is the name of the 
component automaton in which the transition is defined, followed by a period and the identifier 
for the transition. The component name is an identifier, corresponding to the local name of the 
component within the composite automaton, followed by expressions for the values of its actual 
parameters, if any, separated by commas and enclosed in brackets. If the component is itself a 
composite component, its local component name and parameters are followed by a period and 
the identifier and parameters of its component, continuing in this manner through the levels of 
composite nesting until the component in which the transition is defined is identified. 

A fire statement within a simulation proof may have an optional list of substitutions just before 
the semicolon. This list consists of the keyword using followed by one or more substitutions, each 
of which is an expression followed by the keyword for and an identifier. The value of expression is 
substituted for the identifier when the transition is fired. 

19.7 Follow Statements 

basicStatement ::=’follow’ ID ’duration’ expr ; 
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compStmt ::=’follow’ compTrajList ’duration’ expr ;

compTrajList ::=componentTrajectory (, componentTrajectory )*

componentTrajectory ::=compInstance . ID (( expr (, expr)* ) )?

compInstance ::=ID ([ expr (, expr)* ] )? (. ID ([ expr (, expr)* ] )? )*


simProofStmt ::=’follow’ (compInstance . )? ID ’duration’ expr ; 

A follow statement causes a trajectory to be followed during a simulation run. The follow state
ment begins with the keyword follow, the name of the trajectory to be followed, and expressions 
for the trajectory’s actual parameters, if any, separated by commas and enclosed in parentheses. 
Next are the keyword duration, an expression denoting the length of time the trajectory should 
be followed, and a semicolon. For follow statements in a schedule or simulation relation proof for a 
basic automaton, the name of the trajectory is its identifier. For schedules and simulation relation 
proofs for composite automata, the name of the trajectory is the name of the component automaton 
in which the trajectory is defined, followed by a period and the identifier for the trajectory. The 
component name is an identifier, corresponding to the local name of the component within the 
composite automaton, followed by expressions for the values of its actual parameters, if any, sepa
rated by commas and enclosed in brackets. If the component is itself a composite component, its 
local component name and parameters are followed by a period and the identifier and parameters of 
its component, continuing in this manner through the levels of composite nesting until the compo
nent in which the trajectory is defined is identified. A follow statement in a composite automaton 
optionally may specify a list of trajectories, separated by commas, to be followed concurrently. 

19.8 Run Statements 

simulateStmt ::=’run’ componentDef ; 
componentDef ::=ID (( actual (, actual)* ) )? 

A run statement consists of the keyword run followed by an identifier, corresponding to the 
name of the automaton to be run, a list of expressions for the values of the automaton’s actual 
parameters, if any, separated by commas and enclosed in parentheses, and a semicolon. The effect 
of the run statement is to execute the statements in the schedule of the named automaton. Run 
statements may only appear in simulation blocks. 

19.9 Yield Statements 

ndrStatement ::=’yield’ expr ; 

A yield statement consists of the keyword yield followed by an expression and a semicolon. 
The yield statement may only appear in a nondeterminism resolution program. The value of the 
expression becomes the value returned by the choose operator associated with this nondeterminism 
resolution program. The next time the choose operator is invoked, execution of the nondeterminism 
resolution program begins with the statement immediately after the yield statement. 

19.10 Empty Statements 
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effStmt ::=; 
basicStatement ::=; 
compStmt ::=; 
simulateStmt ::=; 
ndrStatement ::=; 
simProofStmt ::=; 

An empty statement is just a semicolon. It has no effect. 

20 Simulation Blocks 

simProg ::=’simulate’ ’do’ simulateProgram ’od’

simulateProgram ::=simulateStmt+

simulateStmt ::=lvalue := value ;


| ’print’ value ; 
| ’if’ simCondRec ’fi’ 
| ’while’ expr ’do’ simulateProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ simulateProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ simulateProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ simulateProgram ’od’ 
| ’run’ componentDef ; 
| ; 

simCondRec ::=expr ’then’ simulateProgram (’elseif’ simCondRec | ’else’ simulateProgram )? 

A simulation block begins with the keywords simulate do followed by one or more statements 
and the keyword od. Statement types that are valid in a simulation block are assignment state
ments, print statements, if statements, while statements, for statements, run statements, and empty 
statements. The statements are executed sequentially when the Tempo program is run in a simula
tion. A simulation block is required if more than one automaton is defined in the Tempo program 
of if the automaton to be simulated is parameterized. 

21 Simulation Relations 

simDef ::=’forward’ simulationCore ’end’ 
| ’backward’ simulationCore ’end’ 

simulationCore ::=’simulation’ ID (formals where? )? 
’from’ ID : componentDef 
’to’ ID : componentDef 
’mapping’ (expr; )+ imports? simProof? 

formals ::=( formal (, formal )* ) 
formal ::=ID (, ID)* : (typeRef | ’Type’ ) 
where ::=’where’ expr 
componentDef ::=ID (( actual (, actual)* ) )? 

A simulation relation expresses a relationship between the behaviors of two automata. It begins 
with the keywords forward simulation or backward simulation, describing the direction of 
simulation, followed by an identifier, corresponding to the name of the relation. The simulation 
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relation may have a list of the formal parameters, separated by commas and enclosed in parentheses. 
Each formal parameter consists of an identifier, corresponding to the name of the parameter, 
followed by a colon and its data type or the keyword Type. If multiple, adjacent parameters are of 
the same data type, their identifiers may be separated by commas and followed by a single colon 
and their common data type. The range of parameter values may be constrained with an optional 
where clause, consisting of the keyword where followed by a predicate expression. The simulation 
relation is valid only when the values of the actual parameters are such that the where clause 
expression evaluates to true. 

Next, the two automata involved in the simulation relation are specified with the keyword from, 
a designation of the first automaton, the keyword to, and a designation of the second automaton. 
Each automaton designation consists of an identifier, corresponding to a local name for the au
tomaton within the simulation relation, followed by a colon, a second identifier, corresponding to 
the name of the automaton, and a list of the actual parameters of the automaton, if any, separated 
by commas and enclosed in parentheses. 

The mapping between the two automata is specified with the keyword mapping followed by one 
or more predicate expressions, each ending in a semicolon. Within these expressions, a state variable 
of either automaton is referenced by the local name of the automaton, followed by a period and 
the name of the variable within the automaton. The simulation relation holds if all the predicate 
expressions of the mapping evaluate to true in every pair of initial states of the two automata, and 
continue to be true after every transition and trajectory of the ”from” automaton. Such a proof 
may be done by hand or with an interactive theorem-prover such as PVS. 

A simulation relation ends with an optional import statement (see Section 15.2), an optional 
simulation relation proof, and the keyword end. 

21.1 Simulation Relation Proof 

simProof ::=’proof’ states? simProofStart? simProofEntries?

simProofStart ::=’start’ (lvalue := expr ; )+

simProofEntries ::=(transEntry | trajEntry )+

transEntry ::=’for’ ’input’ (compInstance . )? ID (( ID (, ID )* ) )? simProofAction


| ’for’ ’output’ (compInstance . )? ID (( ID (, ID )* ) )? simProofAction 
| ’for’ ’internal’ (compInstance . )? ID (( ID (, ID )* ) )? simProofAction 

trajEntry ::=’for’ ’trajectory’ (compInstance . )? ID (( ID (, ID )* ) )? ’duration’ expr simProofAction 

A simulation relation proof begins with the keyword proof followed by an optional list of states 
(see Section 17.1.2), an optional initialization of variables, and an optional list of transitions and 
trajectories of the from automaton, each with an associated proof program. The initialization of 
variables, if present, begins with the keyword start followed by one or more assignment statements 
(see Section 19.1). 

Each entry in the list of transitions and trajectories begins with the keywords for and either 
input, output, internal, or trajectory, depending on the type of the transition or trajectory. 
If the transition or trajectory is located in a composite automaton, the name of its component 
automaton is next. These are followed by an identifier, corresponding to the name of the transition 
or trajectory, and a list of identifiers, separated by commas and enclosed in parentheses, for its 
parameters, if any. Next, for trajectories, is the keyword duration followed by an expression for the 
length of time the trajectory should be followed. Finally, each entry ends with a simulation relation 
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proof program specifying the actions of the to automaton which correspond to this transition or 
trajectory. 

21.2 Simulation Relation Proof Programs 

simProofAction ::=’ignore’ 
| ’do’ simProofProgram ’od’ 

simProofProgram ::=simProofStmt+ 
simProofStmt ::=lvalue := value ; 

| ’print’ value ; 
| ’if’ proofCondRec ’fi’ 
| ’while’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ simProofProgram ’od’ 
| ’fire’ msgInvoke (’using’ proofUsings)? ; 
| ’follow’ (compInstance . )? ID ’duration’ expr ; 
| ; 

proofCondRec ::=expr ’then’ simProofProgram (’elseif’ proofCondRec |’else’ simProofProgram )? 
msgInvoke ::=’input’ (compInstance . )? ID (( expr (, expr)* ) )? 

| ’output’ (compInstance . )? ID (( expr (, expr)* ) )? 
| ’internal’ (compInstance . )? ID (( expr (, expr)* ) )? 

proofUsings ::=expr ’for’ ID (, expr ’for’ ID)* 

A transition or trajectory proof program may consist only of the keyword ignore, in which case 
the associated transition or trajectory is not considered in the simulation relation proof. Otherwise, 
the proof program begins with the keyword do followed by one or more simulation proof statements 
and the keyword od. Statement types that are valid in a simulation proof program are assignment 
statements, print statements, if statements, while statements, for statements, fire statements, follow 
statements, and empty statements. 
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Appendices 

A Tempo Keywords 

A.1 Reserved Words 
automaton fi mapping then 
backward fire od to 
choose follow of trajdef 
components for operators trajectories 
const forward output trajectory 
constant from pre transitions 
d hidden print true 
defines if proof Type 
det ignore run types 
do imports schedule urgent 
duration in signature using 
eff initially simulate vocabulary 
else input simulation when 
elseif internal start where 
end invariant states while 
ensuring let stop with 
evolve locals tasks yield 
false 

A.2 Built-in Data Types 

Array Enumeration Nat Set 
AugmentedReal Int Null String 
Bool Map Real Tuple 
Char Mset Seq Union 
DiscreteReal 

A.3 Keywords for Built-in Data Types 

abs floor max size 
count head min succ 
defined init mod tag 
delete insert nil tail 
div last pred update 
embed len remove val 
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B Operator Symbols


Mathematical 
Symbol 

Tempo 
Symbol 

Meaning 

← := Assignment 
+ + Addition 
− - Subtraction or set difference 
× * Multiplication 
/ / Division 
ˆ ** Exponentiation 
= = Equal to 
�= ~= Not equal to 
< < Less than 
≤ <= Less than or equal to 
> > Greater than 
≥ >= Greater than or equal to 
∞ \infty Infinity 
¬ ~ Negation (not) 
∧ /\ Conjunction (and) 
∨ \/ Disjunction (or) 
∀ \A For all 
∃ \E There exists 
⇒ => Implication (implies) 
⇔ <=> Logical equivalence (if and only if) 
∈ \in Member of 
/∈ \notin Not a member of 
⊂ \subset Proper subset 
⊆ \subseteq Subset 
⊃ \supset Proper superset 
⊇ \supseteq Superset 
∪ \U Union 
∩ \I Intersection 
∅ {} Empty set or sequence 
� | Append to sequence 
� -| Prepend to sequence 
� || Concatenation 

__ Vocabulary placeholder 
→ -> Operator result for a vocabulary 

! Reserved for future use 
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C Tempo Grammar 

Top-level 

spec ::=(typeDecls | imports | include | funDecls | vocabDef | autoDef | invDef | simDef | simProg)+ ’EOF’

imports ::=’imports’ vocabRef (, vocabRef )*

vocabRef ::=ID (( actual (, actual )* ) )?

include ::=’include’ STRING

funDecls ::=’let’ (funDecl ; )+

funDecl ::=ID ( (ID (, ID)* )? ) : typeSignature = expr

invDef ::=’invariant’ idOrNumeral? ’of’ ID : exprTerminated

idOrNumerals ::=idOrNumeral (, idOrNumeral )*

idOrNumeral ::=(ID | INT )

actual ::=(expr | ’Type’ typeRef )


Type declarations 

typeDecls ::=’types’ typeDecl (, typeDecl)*

typeDecl ::=ID (: typeRef)?

typeRef ::=ID


| ID [ typeList ]

| ’Enumeration’ [ idOrNumerals ]

| ’Tuple’ [ fieldDecls ]

| ’Union’ [ fieldDecls ]


fieldDecls ::=fieldDecl (, fieldDecl )* 
fieldDecl ::=ID (, ID )* : typeRef 
typeSignature ::=typeList? - > typeRef 
typeList ::=typeRef (, typeRef )* 

Vocabulary definitions 

vocabDef ::=’vocabulary’ ID formals? defines? importsAndTypes? operators? ’end’

formals ::=( formal (, formal )* )

formal ::=ID (, ID)* : (typeRef | ’Type’ )

defines ::=’defines’ ID [ typeList ]

importsAndTypes ::=(imports | typeDecls )+

operators ::=’operators’ opDecl (, opDecl )*

opDecl ::=rootOpName (, rootOpName )* : typeSignature

rootOpName ::=’if’ ’then’ ’else’


| opName 
| idOrNumeral 

opName ::=prefixSpec | infixSpec | mixfixSpec 
prefixSpec ::=(opSym | ˜ ) | . | ID 
infixSpec ::= (opSym ( | ID )| ID ) 
mixfixSpec ::= ? { ( (, 

| . 
)* )? }

| ? [ ( (, )* )? ] 
opSym ::=(OPERATOR | <=> | => ~= | plainOp ) 
plainOp ::=(< | <= | > | >= | + | -

|
| 
∧
* |

|
/
∨ 
| 

|
** 

= 
) 

| 
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Automaton definitions 

autoDef ::=’automaton’ ID ( formals where? )? imports? autoCore

where ::=’where’ expr

autoCore ::=(basicAutomaton | composedAutomaton )

basicAutomaton ::=actionSignature? states funDecls? transitions? trajectories? tasks? schedule?

actionSignature ::=’signature’ (formalActions )+

states ::=’states’ (state ; )+ initially?


| ’states’ 
transitions ::=’transitions’ (transition )+ 
trajectories ::=’trajectories’ (trajectory )+ 
tasks ::=’tasks’ (task )+ 
schedule ::=’schedule’ states? ’do’ basicProgram? ’od’ 
state ::=ID : typeRef (:= value )? 
initially ::=’initially’ expr ; 

formalActions ::=’input’ formalAction (, formalAction )* 
| ’output’ formalAction (, formalAction )* 
| ’internal’ formalAction (, formalAction )* 

formalAction ::=ID (( sigFormal (, sigFormal )* ) where? )? 
sigFormal ::=’const’ expr 

| ID (, ID)* : typeRef 

Automaton transitions and trajectories 

transition ::=’input’ transitionCore 
| ’output’ transitionCore 
| ’internal’ transitionCore 

transitionCore ::=ID (( actionActuals ) where? )? localVars? funDecls? precondition? urgency? effect?

actionActuals ::=expr (, expr )*

localVars ::=’locals’ (localDecl ; )+

precondition ::=’pre’ exprTerminated

urgency ::=’urgent’ ’when’ expr ;

effect ::=’eff’ effProgram (’ensuring’ expr ; )?

localDecl ::=ID : typeRef (:= value )?

exprTerminated ::=(expr ; )+

effProgram ::=effStmt+

effStmt ::=lvalue := value ;


| ’print’ value ;

| ’if’ effCondRec ’fi’

| ’while’ expr ’do’ effProgram ’od’

| ’for’ ID ’in’ expr ’do’ effProgram ’od’

| ’for’ ID : typeRef ’in’ expr ’do’ effProgram ’od’

| ’for’ ID : typeRef ’where’ expr ’do’ effProgram ’od’


effCondRec 
| ; 
::=expr ’then’ effProgram (’elseif’ effCondRec | ’else’ effProgram )?


trajectory ::=’trajdef’ ID (formals where? )? funDecls? trajInvariant? stopCond? evolve?

trajInvariant ::=’invariant’ exprTerminated

stopCond ::=’stop’ ’when’ expr ;

evolve ::=’evolve’ exprTerminated

task ::={ actionSet (, actionSet )* } forClause?
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actionSet ::=(compInstance . )? ID (( expr (, expr)* ) where? )?

forClause ::=’for’ varList (, varList)* where?

varList ::=ID (, ID )* : typeRef


Composed Automaton 

composedAutomaton ::=components hiddenActionSets? compSchedule?

components ::=’components’ (component ; )+

hiddenActionSets ::=’hidden’ (actionSet ; )+

compSchedule ::=’schedule’ states? ’do’ compProgram? ’od’

component ::=ID ([ varList (, varList )* ] )? (: componentDef)? where?

componentDef ::=ID (( actual (, actual)* ) )?


Simulation Relations 

simDef ::=’forward’ simulationCore ’end’ 
| ’backward’ simulationCore ’end’ 

simulationCore ::=’simulation’ ID (formals where? )? 
’from’ ID : componentDef 
’to’ ID : componentDef 
’mapping’ (expr; )+ imports? simProof? 

simProof ::=’proof’ states? simProofStart? simProofEntries?

simProofStart ::=’start’ (lvalue := expr ; )+

simProofEntries ::=(transEntry | trajEntry )+

transEntry ::=’for’ ’input’ (compInstance . )? ID (( ID (, ID )* ) )? simProofAction


| ’for’ ’output’ (compInstance . )? ID (( ID (, ID )* ) )? simProofAction 
| ’for’ ’internal’ (compInstance . )? ID (( ID (, ID )* ) )? simProofAction 

trajEntry ::=’for’ ’trajectory’ (compInstance . )? ID (( ID (, ID )* ) )? ’duration’ expr simProofAction 
simProofAction ::=’ignore’ 

| ’do’ simProofProgram ’od’ 
simProofProgram ::=simProofStmt+ 

simProofStmt ::=lvalue := value ; 
| ’print’ value ; 
| ’if’ proofCondRec ’fi’ 
| ’while’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ simProofProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ simProofProgram ’od’ 
| ’fire’ msgInvoke (’using’ proofUsings)? ; 
| ’follow’ (compInstance . )? ID ’duration’ expr ; 
| ; 

proofCondRec ::=expr ’then’ simProofProgram (’elseif’ proofCondRec |’else’ simProofProgram )? 
msgInvoke ::=’input’ (compInstance . )? ID (( expr (, expr)* ) )? 

| ’output’ (compInstance . )? ID (( expr (, expr)* ) )? 
| ’internal’ (compInstance . )? ID (( expr (, expr)* ) )? 

proofUsings ::=expr ’for’ ID (, expr ’for’ ID)* 

117 



Expressions 

expr ::=’if’ expr ’then’ expr ’else’ expr 
| expr (<=> expr )+ 
| expr (=> expr )+ 
| expr (∨ expr )+ 
| expr (∧ expr )+ 
| expr (= expr | ~= expr )+ 
| expr (< expr | > expr | <= expr | >= expr )+ 
| expr (+ expr | - expr | * expr | / expr | ** expr )+ 
| expr (OPERATOR expr )+ 
| - expr 
| ˜ expr 
| (\A | \E )ID (: type | ’in’ expr )expr 
| ’constant’ ( expr ) 
| [ expr (, expr)* ] 
| { ID : type ’where’ expr } | { (expr (, expr)* )? }
| expr { (expr (, expr)* )? }
| expr : type 
| expr (. ID | [ expr (, expr)* ] )+ 
| ( type ) expr 
| ID ( (expr (, expr)* )? ) 
| (INT | FLOAT | STRING | ’true’ | ’false’ | ( expr ) | ID | ID’ ) 

lvalue ::=ID ([ expr (, expr)* ] | . ID )* 
value ::=(expr | choice ) 
choice ::=’choose’ (variable where? )? choiceNDR? 
variable ::=ID (: typeRef )? 
choiceNDR ::=’det’ ’do’ ndrProgram? ’od’ 

| yield expr 

Imperative Programs 

basicProgram ::=basicStatement+ 
basicStatement ::=lvalue := value ; 

| ’print’ value ; 
| ’if’ basicCondRec ’fi’ 
| ’while’ expr ’do’ basicProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ basicProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ basicProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ basicProgram ’od’ 
| ’fire’ ; 
| ’fire’ ’input’ ID (( expr (, expr)* ) )? ; 
| ’fire’ ’output’ ID (( expr (, expr)* ) )? ; 
| ’fire’ ’internal’ ID (( expr (, expr)* ) )? ; 
| ’follow’ ID ’duration’ expr ; 
| ; 

basicCondRec ::=expr ’then’ basicProgram (’elseif’ basicCondRec | ’else’ basicProgram )? 

compProgram ::=compStmt+ 
compStmt ::=lvalue := value ; 

| print value ; 
| ’if’ compCondRed ’fi’ 
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| ’while’ expr ’do’ compProgram ’od’

| ’for’ ID ’in’ expr ’do’ compProgram ’od’

| ’for’ ID : typeRef ’in’ expr ’do’ compProgram ’od’

| ’for’ ID : typeRef ’where’ expr ’do’ compProgram ’od’

| ’fire’ ’input’ compInstance . ID (( expr (, expr)* ) )? ;

| ’fire’ ’output’ compInstance . ID (( expr (, expr)* ) )? ;

| ’fire’ ’internal’ compInstance . ID (( expr (, expr)* ) )? ;

| ’follow’ compTrajList ’duration’ expr ;

| ; 

compCondRec ::=expr ’then’ compProgram (’elseif’ compCondRec | ’else’ compProgram )? 
compInstance ::=ID ([ expr (, expr)* ] )? (. ID ([ expr (, expr)* ] )? )* 
compTrajList ::=componentTrajectory (, componentTrajectory )* 
componentTrajectory ::=compInstance . ID (( expr (, expr)* ) )? 

ndrProgram ::=ndrStatement+ 
ndrStatement ::=lvalue := value ; 

| ’print’ value ; 
| ’if’ ndrCondRef ’fi’ 
| ’while’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID ’in’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID : typeRef ’in’ expr ’do’ ndrProgram ’od’ 
| ’for’ ID : typeRef ’where’ expr ’do’ ndrProgram ’od’ 
| ’yield’ expr ; 
| ; 

ndrCondRec ::=expr ’then’ ndrProgram (’elseif’ ndrCondRec |’else’ ndrProgram )? 

Simulation blocks 

simProg ::=’simulate’ ’do’ simulateProgram ’od’

simulateProgram ::=simulateStmt+

simulateStmt ::=lvalue := value ;


| ’print’ value ;

| ’if’ simCondRec ’fi’

| ’while’ expr ’do’ simulateProgram ’od’

| ’for’ ID ’in’ expr ’do’ simulateProgram ’od’

| ’for’ ID : typeRef ’in’ expr ’do’ simulateProgram ’od’

| ’for’ ID : typeRef ’where’ expr ’do’ simulateProgram ’od’

| ’run’ componentDef ;

| ; 

simCondRec ::=expr ’then’ simulateProgram (’elseif’ simCondRec | ’else’ simulateProgram )? 
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