
6.824 2006 Lecture 8: Tutorial on Cache Consistency and Locking

lecture overview
 a tutorial to help you with labs 4 and 5
 lab 4: locking for correctness with multiple servers
 lab 5: caching for performance

overall goal:
 ccfs-based distributed file system
 try to increase number of clients supported by single block server
 assume that (usually) clients work w/ different files
 so let's make this case efficient using caching
 but let's also preserve correctness

start with your lab 3 ccfs
 [draw picture: two ccfs servers, one block server]

first: correctness w/ multiple servers
 suppose both servers executing a CREATE RPC on same directory
 they both get() dir contents, add a new entry, put() contents
 first put is overwritten, so one file is lost
 how do we know this was the wrong answer?
 need a definition of correctness for concurrent operations
 traditional definition: atomicity
 result of two concurrent operations must be the same as if
 they were run in some one-at-a-time order
 usual solution: serialize operations
 wait for one to finish, then start the second
 if you serialize, and each operation is correct when
 run alone, then the whole system is correct
 don't need to reason specifically about every concurrent
interleaving
 you'll serialize w/ locks in lab 4

[add lock server to picture]

what should each lock protect?
 whole file system? no: prevents concurrency that would have been OK.
 just one block? maybe, but then need one lock per dirent for
NFS3_CREATE.
 i-node + contents: perhaps this will match atomic operation
granularity.
 so let's have locks with name == file handle

what operations need to be atomic in ccfs?
 certainly CREATE, due to get()-modify-put()
 SETATTR?
 WRITE? (sub-block writes to same block, or updating block lists)
 READ? maybe confusing if size != actual amount of data
 and atime update requires read-modify-write

span of a lock in time?
 CREATE checks if file exists, creates new i-node, reads
 directory contents, writes contents, writes directory i-node
 better hold the directory lock the whole time!
 in general, acquire lock first, release when totally done
 then we get serialization

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 lucky we're using file handle as lock name, which means we can
acquire
 lock before any get()
 can't release lock until after last put() completes
 and better not reply to RPC until put() completes

what if a single ccfs gets concurrent CREATEs in the same dir?
 must still execute one at a time
 so you actually need locks even for a single ccfs
 that's why we never wrote more than 8192 bytes in lab3 tester
 (NFS client sends WRITEs concurrently for same file)

do we ever need multiple locks?
 CREATE involves two file handles (directory and new file)
 REMOVE involves both a file and a directory
 do we need to hold two locks?
 RENAME probably requires two locks, if two directories
 deadlock, order of acquisition

what about performance?
 every NFS RPC now involves many RPCs to block and lock server
 likely to be slow

Lab 5 plan:
 want to operate out of local cache, w/ no RPCs to block/lock servers
 as long as only one ccfs is using a given file &c
 only talk to block/lock servers when others need our blocks/locks

step 1: add block caching to ccfs
 you will modify blockdbc.C and .h
 get() checks local cache first
 if in local cache: just return
 otherwise: fetch from block server, add to local cache, return
 put() *just* adds to cache, marks block as dirty
 you can copy some code from blockdbd.C: the hash table

need to know when another ccfs wants to read a block that's dirty in
our cache
 and when another ccfs wants to write a block that's clean in our
cache
 and need to ensure at most one ccfs has a dirty copy of any given
block
 we need "cache consistency"
 informally, a read sees the most recent write

here's a good rule:
 you can cache a block (dirty or not) if you hold the file's lock
 you cannot have a block cached if you don't hold the corresponding
lock
 so need to "flush" blocks before releasing lock back to server
 drop clean blocks from cache
 put() dirty blocks

but this hasn't helped performance!
 must flush data cache before each release()
 still doing many get()/put()/acquire()/release() per NFS RPC
 idea: cache the locks also!

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

so you need to change lock_client to cache locks locally
 so that release() just marks lock locally as released
 if you acquire() it again, no need to talk to lock server
 need to make lock server send a REVOKE if some other client is
waiting
 lock_client should tell fs.C what lock is being revoked
 fs.C should tell block client to send that file's dirty blocks
 to block server, and drop file's clean blocks
 all file's blocks: content, attribute, &c
 fs.C should tell lock_client when block server has replied to all
PUTs
 then lock_client should send a RELEASE RPC to the server

Details
 given a lock name, how to figure out keys of blocks that should be
flushed?
 lock name should be file handle (so easy to flush attributes)
 name other file block in a predictable way from file handle

typical sequencing when interacting with locks
 client #1 is caching the lock and dirty blocks
 client #2 calls acquire()
 #2 -> LS : ACQUIRE
 LS -> #2 : reply
 LS -> #1 : REVOKE
 #1 -> LS : reply
 #1 -> BS : put(fh, v)
 BS -> #1 : reply
 #1 -> LS : RELEASE
 LS -> #1 : reply
 LS -> #2 : GRANT
 #2 -> LS : reply
 #2 -> BS : get(fh)
 #1 must ensure the block server has the dirty data before releasing!

lab 5 quirks
 NFS3_READ must take the lock, not for atomicity, but to get latest
data
 NFS3_REMOVE may need the file lock to force file handle to be stale
 if you only lock the directory, you leave i-node in other caches
 so future GETATTR for file may succeed
 NFS3_CREATE may need to grab lock on new i-node
 to force others to read from our cache

What you're *not* responsible for:
 atomicity w.r.t. crashes
 recovering lock state after lock server reboot
 replicating the block server
 client crash while holding locks: un-do partial operations?

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

