
Today's plan:
 [Any questions about lock server lab?]
 Reviewing event driven programming
 Outline structure of the remaining labs
 Common libasync/libarpc/nfsloop programming idioms:
 writing rpc client code
 writing async functions that call RPCs
 writing rpc server code
 Flash

Event driven programming
 Achieve I/O concurrency for communication efficiently
 Threads give cpu *and* i/o concurrency
 Never quote clear when you'll context switch: cpu+i/o concurrency
 State machine style execution
 Lots of "threads": request handling state machines in parallel
 Single address space: no context switch overhead ==> efficient
 Have kernel notify us of I/O events that we can handle w/o blocking
 The point: this preserves the serial natures of the events
 Programmer sees events/functions occuring one at a time
 Simplifies locking (but when do you still need it?)

libasync handles most of the busywork
 [draw amain/select on board again]
 e.g. write-ability events are usually boring
 libarpc translates to events that the programmer might care about:
rpcs

ccfs architecture:
 [draw block diagram on the board:
 OS [app, ccfs] --> blockserver <-- [ccfs, app] OS
 \-> lockserver <-/
]
 ccfs communicate through RPC: you'll be writing clients and servers
 [include names of RPCs on the little lines]
 real apps can be structured just like this: okws, chord/dhash

Synchronous RPC:
 [Example 1]
 [Sketch this on the board and use it to show evolution]

Making RPCs
 Already saw basic framework in Lab 1
 libarpc provides an rpc compiler: protocol.x -> .C and .h
 Provides (un)marshalling of structs into strings
 External Data Representation, XDR (rfc1832)
 [Example 2]
 libraries to help:
 handle the network (axprt: asynchronous transport)
 write clients (aclnt),
 aclnt handles all bookkeeping/formatting/etc for us:
 e.g. which cb gets called
 write servers (asrv/svccb)

Asynchronous RPC: needs a callback!
 [Example 3]
 Note:

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 1. Need to split code into separate functions: need to declare
prototypes
 2. "return values" passed in by aclnt as arguments: e.g. clnt_stat
 3. cb must keep track of where results will be stored.
 4. Actually must split everything that uses an async function!

How do we translate this into a stub function?
 Need to provide our own callback....
 [Example 4]
 ...translate RPC results/error into something the app can use.

Server side:
 Setup involves listening on a socket, allocating a server with
dispatch cb

 [Example 5]
 dispatch (svccb *sbp):
 switch to dispatch on sbp->proc ();
 call sbp->reply (res);

 You must not block when handling proc ()
 you don't need to reply right away but blocking would be bad

Managing memory with svccb:
 Use getarg<type> to get pointer to argument, svccb managed
 Use getres<type> to get a pointer to a reply struct, svccb managed
 sbp->reply causes the sbp to get deleted.

Writing user-level NFS servers:
 classfsd code will allow you to mount a local NFS server w/o root
 nfsserv_udp handles tedious work, we register a dispatch function
 Similar to generic RPC server but use nfscall *, instead of svccb.
 Adds features like nc->error ()

You'll need to do multiple operations to handle each RPC
 [draw RPC issue timeline os->kernel->ccfs->lockserver/blockserver]
 Not unlike how we might operate:
 get an e-mail from friend: can you make it to my wedding?
 check class calendar on web, check research deadlines
 send IM to wife, research ticket prices, reply
 Or Amazon.com login...
 [Example 6]

An aside on locking:
 No locking etc needed usually: e.g. to increment a variable
 When do you need locking?
 When an operation involving multiple stages
 Be careful about callbacks that are supposed to happen "later"
 e.g. delaycb (send_grant);

Parallelism and loops
 [Example 7a]: synchronous code
 [Example 7b]: serialized and async
 [Example 7c]: parallelism but yet...
 [Example 7d]: better parallelism?

Summary

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 Events programming gives programmer a view that is roughly
 consistent with what happens.
 Can build abstractions to handle app level events
 Need to break up state and program flow
 but always know when there's a wait,
 and have good control over parallelism

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

