
6.824 2006 Lecture 1: Introduction and O/S Review

Opening
 building distributed systems
 construction techniques, robustness, good performance
 lectures on design, paper reading for case studies
 you'll build real systems
 why take the course?
 synthesize many different areas in order to build working systems
 Internet has made area much more attractive and timely
 hard/unsolved: not many deployed sophisticated distrib systems

Example:
 how to build HotMail?
 mail arrives from outside world
 store it until...
 user's Outlook/Eudora reads/deletes/saves it

Simple Solution:
 One server w/ disk to store mail-boxes
 [picture: MS, sending "clients", reading clients]
 What happens as your mail service gets popular?

Topic: Stable performance under high load
 Example: Starbucks.
 5 seconds to write down incoming request. 10 seconds to make it.
 [graph: x=requests, y=output]
 max thruput at 4 drinks/minute.
 what happens at 6 req/min?
 thruput goes to zero at 12 requests/minute.
 Efficiency *decreases* with load -- bad.
 Careful system design to avoid this -- flat line at 4 drinks.
 Peets, for example.
 Better: build systems whose efficiency *increases* w/ load
 w/ e.g. batching, disk scheduling

Topic: scalable performance
 What if more clients than one Hotmail server can handle?
 How to use more servers to handle more clients?
 Idea: partition users across servers
 bottlenecks: how to ensure incoming mail arrives at the right
server?
 scaling: will 10 servers allow us to handle 10x as many users?
 load balance: what if some users get much more mail than others?
 layout: what if we want to detect spam by looking at all mailboxes?

Topic: high availability
 Can I get at my HotMail mailbox if some servers / networks are down?
 Yes: replicate the data.
 Problem: replica consistency. delete mail, re-appears.
 Problem: physical independence vs communication latency
 Problem: partition vs availability. airline reservations.
 Tempting problem: can 2 servers yield 2x availability AND 2x
performance?

Topic: global scalability
 this is really an opportunity

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 we have the entire Internet as a resource
 what neat new big systems can we build that take advantage?
 are there any principles to be discovered?
 finding objects
 storing objects "out there"
 serving same objects to many consumers
 widely distributed computing (e.g. grid computing)

Topic: security
 old view: secrecy via encryption (msg to Moscow embassy)
 user authentication via passwords &c
 all parties know each other!
 Internet has changed focus.
 global exposure to random attacks from millions of bored students
 and serious hackers, e.g. intrusions for spam bot nets
 you fetch a new Firefox binary, how do you know it hasn't been
hacked?
 how do you know that was Amazon you gave your credit card number to?
 how does Amazon know it was you?
 no purely technical approach is likely to solve these problem

We want to understand the individual techniques, and how to assemble
them.

Course structure
 URL
 meetings: 1/2 lectures, 1/2 paper discussions
 research papers on working systems, starting next week
 must read papers before class
 otherwise boring, and you can't pick it up by listening
 we will post paper questions 24 hours in advance
 hand in answer on paper in class, one or two paragraphs
 two in-class quizzes (no final)
 Labs: build a real cluster file server, cache consistency, locking
 Project. look at the project information page!
 design, implement, report
 teams
 proposal
 conferences
 two drafts
 demo
 report
 Emil is TA, office hours TBA
 Look at the web site:
 sign up for course machine accounts
 look at the first lab, due in a week

O/S kernel overview
 context in which you build distributed systems
 o/s has big impact on design, robustness, performance
 sometimes because of o/s quirks
 mostly because o/s solves some hard problems
 This should be review for most of you

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 Want to tell what I think is important
 Give you a chance to ask questions

What problems does o/s solve?
 sharing hardware resources
 protection
 communication
 hardware independence
 (everyone faces these problems)

Approach to solutions?
 o/s designers think like programmers, abstractions + interfaces

UNIX abstractions
 (we'll be programming UNIX in labs, my favorite O/S)
 process
 address space
 thread of control
 user ID
 file system
 file descriptor
 on-disk file
 pipe
 network connection
 device

All this is implemented by a "kernel" with hardware privileges

Note we're partially virtualizing
 o/s multiplexes physical resource among multiple processes
 CPU, memory, disk, network
 to share, to control, to provide a simple model to apps
 abstraction helps virtualization: easier to share TCP conns than enet

Can't completely virtualize
 file system and network stack not the same as physical foundation
 the differences make sharing possible

abstractions interact, must form a coherent set
 if o/s can start programs, it must know how to read files

System call interface to kernel abstractions
 looks like function call, but special
 fork, exec
 open, read, creat

Standard picture
 app (show two of them, mark addresses from zero)
 libraries

 FS
 disk driver
 (mention address spaces, protection boundaries)
 (mention h/w runs kernel address space w/ special permissions)

Why Big Kernels have been successful.
 easy for kernel subsystems to cooperate

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 disk buffer shares phys mem with virtual mem system
 all kernel code is 100% privileged
 very simple security model
 easy to implement sophisticated and efficient services

Why UNIX abstractions are not perfect
 kernel is big
 kernel has room for lots of bugs; it's all privileged
 kernel limits flexibility
 multiple threads per process?
 single thread crossing into a different address space?
 control disk layout of files for performance?
 don't like the kernel's TCP implementation?
 we'll discuss a number of improved abstractions

Alternate set of abstractions: micro-kernel
 Move complex abstractions to server processes
 Talk to FS server, rather than FS module in kernel
 Kernel mostly handles IPC
 also grants h/w access to privileged servers
 e.g. FS server can read/write disk h/w
 Looks like a miniature distributed system!
 Move FS server to a different machine, via network?
 Lots of overlap with our concerns in this class.

Let's review some basics which will come up a lot:
 process / kernel communication
 how processes and kernel wait for events (disk and network i/o)

Life-cycle of a simple UNIX system call
 [diagram. process, kernel]
 See the handout...

Interesting points:
 protected transfer
 h/w allows process to get kernel permissions
 but only by jumping to *known* entry point in kernel
 process suspended until system call finishes

What if the system call needs to wait, e.g. for the disk?
 We care: this is what busy servers do
 sys_open(path)
 for each pathname component
 start read of directory from disk
 sleep waiting for the disk read
 process the directory contents
 sleep()
 save *kernel* registers to PCB1 (including SP)
 find runnable PCB2
 restore PCB2 kernel registers (SP...)
 return

Note:
 each user process has its own kernel stack [draw in diagram]
 kernel stack contains state of partially executed system call
 "kernel half"
 trap handler must execute on the right stack

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 "blocking system call"

What happens when disk completion interrupt occurs?
 Device interrupt routine finds the process waiting for that I/O.
 Marks process as runnable.
 Returns from interrupt.
 Someday process scheduler will switch to the waiting process.

Now let's look at how services use this kernel structure.

Explain server_1 web server in handout

Problem
 [draw this time-line]
 Time-lines for CPU, disk, network
 Server alternates waiting for each of them
 CPU, disk, network are each idle much of the time
 OK if only one client.
 Not OK if there are clients waiting for service.
 We may have lots of work AND idle resources. Not good.
 s/w structure forces one-at-time processing
 How can we use the system's resources more efficiently?

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

