SMA 6304 / MIT 2.853 / MIT 2.854 Manufacturing Systems Lecture 10: Data and Regression Analysis Lecturer: Prof. Duane S. Boning

(1) Within Group Variation

- Assume that each group is normally distributed and shares a common variance σ_0^2
- SS_t = sum of square deviations within tth group (there are k groups)
- $SS_t = \sum_{i=1}^{n_t} (y_{tj} \bar{y}_t)^2$ where n_t is number of samples in treatment t Estimate of within group variance in tth group (just variance formula)
 - $s_t^2 = SS_t/\nu_t = \frac{SS_t}{n_t 1}$ where ν_t is d.o.f. in treatment t
- · Pool these (across different conditions) to get estimate of common within group variance: $\nu r^2 \perp \nu_r s^2 + \dots + \nu_k s_k^2 = SS_R = SS_R$

7

$$s_R^2 = \frac{\nu_1 s_1^2 + \nu_1 s_1^2 + \dots + \nu_k s_k^2}{\nu_1 + \nu_2 + \dots + \nu_k} = \frac{SS_R}{\nu_R} = \frac{SS_R}{N - k}$$

• This is the within group "mean square" (variance estimate) $MS_R = \frac{SS_R}{\nu_R} = s_R^2$

Copyright 2003 © Duane S. Boning.

- Use *F* distribution to find how likely a ratio this large is to have occurred by chance alone
 - This is our "significance level"
 - If $F_0 = s_T^2/s_R^2 > F_{\alpha,k-1,N-k}$ then we say that the mean differences or treatment effects are significant to (1- α)100% confidence or better

10

Copyright 2003 © Duane S. Boning.

<section-header><equation-block><text><equation-block><equation-block><equation-block><equation-block>

(6	6) Res	ults: Th	e ANOVA	Tabl	е
source of variation	sum of squares	degrees of freedom	mean square	F ₀	Pr(F ₀)
Between treatments	SS_T	k-1	$s_T^2 = \frac{SS_T}{k-1}$	$\frac{s_T^2}{s_R^2}$	table
Within treatments	Also res res as "res SS_R	eferred to sidual" SS $N-k$	$s_R^2 = \frac{SS_R}{N-k}$		
Total about the grand average SSp =	SS_D \uparrow $SS_T + SS_B$	N-1	$s_D^2 = \frac{SS_D}{N-1}$		
Copyright 2003 ©	Duane S. Bonir	ng.			12

Copyright 2003 © Duane S. Boning.

MANOVA –	Т١	NO	D	epen	der	ncies		
 Can extend to two (or n assumes a mathematic (or treatment offsets) for 	nore al m r ea) va ode ch c	riabl I, ag liscr	es of inte ain simpl ete variat	rest. y cap ble le	MANOV oturing th vel:	A ie me	eans
$egin{array}{c} y_{ti} \ \hat{y}_{ti} \end{array}$	=	$\mu \ \hat{\mu}$	+ +	$ au_t \\ au_t$	+ +	$\begin{array}{c} \beta_i \\ \hat{\beta}_i \end{array}$	+	ϵ_{li}
# model coeffs	=	1 ↑	+	$\stackrel{k}{\uparrow}$	+	$\stackrel{n}{_{\uparrow}}$		
# independent model coeffs	=	1	+	(k - 1)	+	(n-1)		
	Reca coeffi have	$k = \frac{1}{k}$	at ou ts, be l ind	IF $\hat{\tau}_t$ are π ecause $\sum \tau$ ependent r	$tot all t_t = 0.$ nodel	independ Thus we coeffs, or	lent really $\nu_t =$	nodel y only k-1.
Assumes that the effect	s fro	om t	he tv	vo variab	les a	re addit	ive	
Copyright 2003 © Duane S. Boning.								15

source of variation	sum of squares	degrees of freedom	mean square	F ₀	Pr(F ₀)
Between levels of factor 1 (T)	SS_T	k-1	s_T^2	s_T^2/s_E^2	table
Between levels of factor 2 (B)	SS_B	n-1	s_B^2	s_B^2/s_E^2	table
Interaction	SS_I	(k-1)(n-1)	s_I^2	s_I^2/s_E^2	table
Within Groups (Error)	SS_E	nk(m-1)	s_E^2		
Total about the grand average	SS_D	nkm - 1			

Measures of Model Goodness – R²

- Goodness of fit R²
 - Question considered: how much better does the model do that just using the grand average?

 $R^2 = \frac{SS_T}{SS_D}$

- Think of this as the fraction of squared deviations (from the grand average) in the data which is captured by the model
- Adjusted R²
- For "fair" comparison between models with different numbers of coefficients, an alternative is often used

$$R_{\rm adj}^2 = 1 - \frac{SS_R/\nu_R}{SS_D/\nu_D} = 1 - \frac{s_R^2}{s_R^2}$$

19

– Think of this as (1 – variance remaining in the residual). Recall ν_{R} = ν_{D} - ν_{T}

Copyright 2003 © Duane S. Boning.

Least Squares Regres	sion, cont.
 Least squares estimation via normal equations For linear problems, we need not calculate SS(β); rather, direct solution for b is possible Recognize that vector of residuals will be normal to vector of x values at the least squares estimate 	$\begin{array}{rcl} \sum(y-\hat{y})x &=& 0\\ \sum(y-bx)x &=& 0\\ \sum xy &=& \sum bx^2\\ \Rightarrow & b = \sum x^2\\ \end{array}$
 Estimate of experimental error Assuming model structure is adequate, estimate s² of σ² can be obtained: 	$s^2 = \frac{SS_B}{n-1}$
Copyright 2003 © Duane S. Boning.	22

Regression: Mean Centered Models	
• Model form $\eta = \alpha + \beta(x - \bar{x})$ • Estimate by $\hat{y} = a + b(x - \bar{x}), y_i \sim N(\eta_i, \sigma^2)$	
Minimize $SS_R = \sum (y_i - \hat{y}_i)^2$ to estimate α and β	
$\begin{array}{ll} a &= \bar{y} \\ \mathrm{E}(a) = \alpha \end{array} \qquad \qquad b &= \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \\ \mathrm{E}(b) = \beta \end{array}$	
$\operatorname{Var}(a) = \operatorname{Var}\left[\frac{\sum y_i}{k}\right] = \frac{\sigma^2}{k}$ $\operatorname{Var}(b) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$	
Copyright 2003 © Duane S. Boning. 27	

Regression: Mean Centered Models • Confidence Intervals $\hat{y_i} = \hat{y} + b(x_i - \bar{x})$ $\operatorname{Var}(\hat{y_i}) = \operatorname{Var}(\bar{y}) + (x_i - \bar{x})^2 \operatorname{Var}(b)$ $= \frac{s^2}{n} + \frac{s^2(x_i - \bar{x})^2}{\sum(x_i - x)^2}$ • Our confidence interval on y widens as we get further from the center of our data! $\hat{y_i} \pm t_{\alpha/2} \sqrt{\operatorname{Var}(\hat{y_i})}$ $\hat{y_i} \pm t_{\alpha/2} \sqrt{\frac{s^2(x_i - \bar{x})^2}{\sum(x_i - \bar{x})^2}}$

28

Copyright 2003 @ Duane S. Boning.

2		
0		
6		
а		

Growth Rate - Second Order Model

- · No evidence of lack of fit
- · Quadratic term significant

Analysis of variance for growth rate data: quadratic model

source	sum of squares	degrees of freedom	mean square		
model	$S_{H} = 68.071.8 \begin{cases} \text{mean 67,404,1} \\ \text{extra for linear 24.5} \\ \text{extra for quadratic 643.2} \end{cases}$	3{1 1	67,404.1 24.5 643.2		
residual	$S_R = 43.2 \begin{cases} S_L = 16.2 \\ S_E = 27.0 \end{cases}$	7{3	$\begin{cases} 5.40 \\ 6.75 \end{cases} ratio = 0.8$		
total	S+ = 68,115.0	10			

Analysis o	f Var	ianc	e							
Source Model Error C. Total	DF 2 7 9	Sum o 6	of Squares 65.70617 45.19383 710.90000	Mean Squar 332.853 6.456	3 6	F Ratio 51.5551 Prob > F <.0001	0 -	• Gene	rated using JMF	o packag
Lack Of Fi	t							Summary	of Fit	
Lack Of Fit Pure Error Total Error	DF 3 4 7	Su	m of Squar 18.19382 27.00000 45.19382	es Mean Squ 29 6.06 00 6.75 29	iare i46 i00	0.89 Prob 0.51 Max R 0.96	atio 985 > F 157 :Sq :Sq :20	RSquare RSquare Adj Root M Mean of Ro Observat	ean Sq Error esponse ons (or Sum Wgts)	0.93642 0.91826 2.5409 82 1
Parame	eter E	stim	ates							
Term Intercept x x*x		E 35.6 5.26 -0.1	stimate 57437 28956 27674	Std Error 5.617927 0.558022 0.012811	t	Ratio 6.35 9.43 -9.97	Prob 0.00 <.00 <.00	> t 04 001		
Effect Te	sts									
Source x x*x	Np	arm 1 1	DF 1 1	Sum of Squ 574.2 641.2	uare 2855 2045	s 53 51	F Ra 88.950 99.315	tio Prob > 02 <.000 51 <.000	F 11	
Copyright 2	003 ©	Duane	e S. Bonina							34

