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SMA 6304 / MIT 2.853 / MIT 2.854 
Manufacturing Systems 

Lecture 10: Data and Regression 
Analysis 

Lecturer: Prof. Duane S. Boning 

Agenda 

1. Comparison of Treatments (One Variable) 
• Analysis of Variance (ANOVA) 

2. Multivariate Analysis of Variance 
• Model forms 

3. Regression Modeling 
• Regression fundamentals 
• Significance of model terms 
• Confidence intervals 
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Is Process B Better Than Process A? 
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Two Means with Internal Estimate of Variance 
Method A Method B 

Pooled estimate of 

Estimated variance 

with =18 d.o.f 

Estimated standard error 

So only about 80% confident that 
mean difference is “real” (signficant) 

Comparison of Treatments 

Population A Population C Sample A 
Sample B 

Sample C
Population B


• Consider multiple conditions (treatments, settings for some variable) 
– There is an overall mean µ and real “effects” or deltas between conditions τ .i
– We observe samples at each condition of interest 

• Key question: are the observed differences in mean “significant”? 
–	 Typical assumption (should be checked): the underlying variances are all the 

same – usually an unknown value (σ0
2) 
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Steps/Issues in Analysis of Variance 
1. Within group variation 

–	 Estimates underlying population variance 

2. Between group variation 
–	 Estimate group to group variance 

3. Compare the two estimates of variance 
–	 If there is a difference between the different treatments, 

then the between group variation estimate will be inflated 
compared to the within group estimate 

–	 We will be able to establish confidence in whether or not 
observed differences between treatments are significant 

Hint: we’ll be using F tests to look at ratios of variances 
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(1) Within Group Variation 
Assume that each group is normally distributed and shares a 
common variance 

• SS = sum of square deviations w group (there are k groups) 

Estimate of w thin group variance in t group ( ust variance formula) 

Pool these (across different conditions) to get estimate of common 
thin group variance: 

This is the w thin group “mean square” variance estimate) 
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(2) Between Group Variation 
We will be testing hypothesis = … = 
If all the means are in fact equal, then a 2 estimate 

could be formed based on the observed 
differences between group means: 

If all the treatments in fact have different means, then 
estimates something larger: 

Variance is “inf ated” by the 
real treatment effects 
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(3) Compare Variance Estimates 

We now have two different poss es for s
depending on whether the observed sample mean 
differences are “real” or are just occurring by chance 
(by sampling) 

• Use  statistic to see if the ratios of these variances 
are likely to have occurred by chance! 
Formal test for significance: 
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(4) Compute Significance Level 

Calculate observed ratio (w th appropriate 
degrees of freedom in numerator and 
denominator) 

distribution to find how likely a ratio this 
large is to have occurred by chance alone 

This is our “signif cance level” 
– If  

then we say that the mean differences or treatment 
effects are s gnificant to (1- )100% confidence or 

11 

• 

Copyright 2003 © Duane S. Boning. 

(5) Variance Due to Treatment Effects 

We also want to estimate the sum of squared 
deviations from the grand mean among all 
samples: 
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(6) Results: The ANOVA Table 

mean square 

Total about 
the grand 

Within 
treatments 

Between 
treatments 

sum of source of 

so referred to 
as “residual” SS 
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Example: Anova 
A B C 

11 10 
10 8 
12 6 

A B C 

6 
8 

10 
12 

i

i
A 3 1 
B 3 8 4 
C 3 1 

f iati df F it 
2 9 

Wi 6 2 

l 8 
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Anova: S ngle Factor 

SUMMARY 
Groups Count Sum Average Var ance 

33  11  
24  
33  11  

ANOVA 
Source o  Var on SS MS P-value F cr
Between Groups 18 4.5 0.064 5.14 

thin Groups 12 

Tota 30 

Excel: Data Analysis, One-Variation Anova 
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ANOVA – Implied Model 
The ANOVA approach assumes a s mple mathematical 

Where is the treatment mean (for treatment type t) 
And is the treatment effect 

th  being zero mean normal residuals ~N(0,
Checks 

Plot residuals against time order 
Exam ne distribution of residuals: should be IID, Normal 
Plot residuals vs. estimates 
Plot residuals vs. other variables of interest 
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MANOVA – Two Dependencies 
Can extend to two (or more) variables of interest. MANOVA 
assumes a mathematical model, again simply capturing the means 
(or treatment offsets) for each discrete variable level: 

Assumes that the effects from the two variables are additive 



6

16 

• i li li

– 

l 

3 
2 
5 

DF 

Tube 
Gas 

1 
2 

1 
2 

DF 

Gas 

104010 

1523671 
Tube 

CBA 

251844132 

3-1-2 
-312 

20 
20 

555 
-5-5-5 

13 
2367 

Copyright 2003 © Duane S. Boning. 

Example: Two Factor MANOVA 

Two LPCVD deposit on tube types, three gas supp ers. Does supp er matter 
in average particle counts on wafers? 

Experiment: 3 lots on each tube, for each gas; report average # particles added 

Model 
Error 
C. Tota

Source 
1350.00 

28.00 
1378.00 

Sum of Squares 
450.0 

14.0 

Mean Square 
32.14 
F Ratio 

0.0303 
Prob > F 

Analysis of Variance 

Source Nparm 
150.00 

1200.00 

Sum of Squares 
10.71 
42.85 

F Ratio 
0.0820 
0.0228 

Prob > F 
Effect Tests 

Factor 1 

Factor 2 

-10 20 -10 
-10 20 -10 

20 20 
20 20 

18 44 
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MANOVA – Two Factors with Interactions 

Can split out the model more explicitly… 

IID, ~N 0,

An effect that depends on both 
t &  factors simultaneously 

t = first factor = 1,2, … k (k = # eve s of first factor
i = second factor = 1,2, … n (n = # levels of second factor) 
j = replication = 1,2, … m (m = # replications at t, th combination of factor levels 

May be interaction: not simp y additive – effects may depend 
synergistically on both factors: 

Estimate by: 

18 
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MANOVA Table – Two Way with Interactions 

mean square 

Total about 

thin Groups 

Between levels 
of factor 1 (T) 

freedom 
sum of 
squares 

source of 
variation 

Between levels 
of factor 2 (B) 

Interaction 
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Measures of Model Goodness – R
Goodness of fit – R

Quest on cons dered: how much better does the model do that ust 
using the grand average? 

Think of this as the fraction of squared deviations from the grand 
average) in the data which is captured by the mode

Adjusted R
For “fair” comparison between models w th different numbers of 
coefficients, an alternat ve is often used 

Think of this as (1 – var ance remaining in the residua
Reca

Regression Fundamentals 
•	 Use least square error as measure of goodness to 


estimate coefficients in a model

•	 One parameter model: 

– Model form 
– Squared error 
– Estimation using normal equations 
– Estimate of experimental error 
– Precision of estimate: variance in b 
– Confidence interval for β 
– Analysis of variance: significance of b 
– Lack of fit vs. pure error 

•	 Polynomial regression 
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Least Squares Regression 

We use least-squares to estimate 
coefficients in typical regression models 
One-Parameter Mode

Goa is to estimate th “best” b 
How define “best”? 

That b wh ch m zes sum of squared 
error between predict on and data 

The residua  sum of squares (for the 
best estimate) is 

20 
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Least Squares Regression, cont. 

Least squares estimation via normal 

For linear problems, we need not 
calcu ate SS( ); rather, d rect solution for 
b is possib
Recognize that vector of res duals will be 
normal to vector of x va ues at the least 
squares estimate 

Estimate of experimental error 
Assum ng model structure is adequate, 
estimate s can be obtained: 

23 
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Precision of Estimate: Variance in b 

We can calculate the variance in our estimate of the slope, b: 

• Why?  

24 
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Confidence Interval for 
Once we have the standard error in b, we can calculate confidence 
ntervals to some des red (1- )100% level of confidence 

Analysis of variance 
Test hypothes s: 
If conf dence interval for includes 0, then not significant 

Degrees of freedom (need in order to use t distribut

p = # parameters est mated 
by least squares 
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Example Regression 

Model 
Error 
C. Total 

Source Sum of Squares Mean Square F Rat

<.0001 
Prob > F 

Tested against reduced mode : Y=0 

Analysis of Variance 

Intercept 
Term Estimate Std Error 

<.0001 

Prob>
Parameter Estimates 

Source Nparm Sum of Squares F Rat
<.0001 

Prob > F 
Effect Tests 

Whole Model 

nc
om

e 
Le

ve
ra

ge
 R

es
du

al
s 

age Leverage, P<.0001 

Age Income 

6.16  

9.88 

14.35 

24.06 

30.34 

32.17 

42.18 

43.23 

48.76 

• Note that this s mple model assumes an intercept of 
zero – model must go through origin 

• We w ll relax this requirement soon 
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Lack of Fit Error vs. Pure Error 
Sometimes we have replicated data 

E.g. multiple runs at same x values in a designed experiment 

We can decompose the res dual error contribut ons 

This al ows us to TEST for lack of fit 
By “lack of fit” we mean evidence that the linear model form is 
nadequate 

Where 
= res dual sum of squares error 
= lack of f t squared error 
= pure replicate error 

27 
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Regression: Mean Centered Models 

Estimate by 
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Polynomial Regression 

• Generated using JMP package 

RSquare 
RSquare Adj 

Root Mean Sq Error 
Mean of Response 

Observat ons (or Sum Wgts

0.936427 
0.918264 
2.540917 

82.1 

Summary of Fit 

Model 
Error 
C. Tota

Source 
665.70617 
45.19383 

710.90000 

Sum of Squares 
332.853 

6.456 

Mean Squar 
51.5551 
F Ratio 

<.0001 
Prob > F 

Analysis of Variance 

Lack Of F
Pure Error 
Total Error 

Source 
18.193829 
27.000000 
45.193829 

Sum of Squares 
6.0646 
6.7500 

Mean Square 
0.8985 
F Ratio 

0.5157 
Prob > F 

0.9620 
Max RSq 

Lack Of Fit 

Intercept 

x*x 

Term 
35.657437 
5.2628956 
-0.127674 

Estimate 
5.617927 
0.558022 
0.012811 

Std Error 
6.35 
9.43 

-9.97 

t Ratio 
0.0004 
<.0001 
<.0001 

Prob>|t

x*x 

Source Nparm 
574.28553 
641.20451 

Sum of Squares 
88.9502 
99.3151 

F Ratio 
<.0001 
<.0001 

Prob > F 
Effect Tests 

35 
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Summary 
Comparison of Treatments – ANOVA 
Multivariate Analysis of Variance 
Regression Modeling 

me Series Models 
Forecasting 


