SMA 6304 / MIT 2.853 / MIT 2.854 Manufacturing Systems

Lecture 10: Data and Regression
Analysis
Lecturer: Prof. Duane S. Boning

Agenda

1. Comparison of Treatments (One Variable)
$\cdot \square$ Analysis of Variance (ANOVA)
2. Multivariate Analysis of Variance

- \square Model forms

3. Regression Modeling

- \square Regression fundamentals
- \square Significance of model terms
- \square Confidence intervals

Is Process B Better Than Process A?

Two Means with Internal Estimate of Variance

Method \mathbf{A}		Method B	
count.	$n_{A}=10$	count	$n_{B}=10$
sum	82.4	sum	$85 \overline{3} .4$
average	$\bar{y}_{A}=84.24$	average	$\bar{y}_{B}=85.54$
sum squares	$\sum\left(y_{A}-\bar{y}_{A}\right)^{2}=75.78$.	sum squares	$\sum\left(y_{B 3}-\bar{y}_{B}\right)^{2}=119.924$

$$
y_{B}-y_{A}=1.30
$$

Pooled estimate of $\sigma^{2} \quad s^{2}=\frac{75.78++119.924}{10+10-2}=\frac{195.788}{18}=10.8727$ with $v=18$ d.o.f
$\begin{aligned} & \text { Estimated variance } \\ & \text { of } \bar{y}_{B}-\bar{y}_{A}\end{aligned} \quad s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{n H}}\right)=\frac{2 s^{2}}{10}=\frac{s^{2}}{5}$
Estimated standard error
of $\bar{y}_{B}-\bar{y}_{A}$

$$
\sqrt{\frac{s^{2}}{5}}=\sqrt{\frac{10.8727}{5}}=1.47
$$

$$
t_{0]}=\frac{\left(\bar{y}_{D}-\bar{y}_{A}\right)-\left(\eta_{D}-\eta_{A}\right)_{0}}{s \sqrt{1 / \mu_{A, ~}+1 / n_{B}}}
$$

For $\left(\eta_{B}-\eta_{B}\right)_{0}=0, \iota_{0}=\frac{1.30}{1.47}=0.88$ with $\nu=18$ degrees of freedom. $\operatorname{Pr}(t \geq 0.88)=0.195$ So only about 80% confident that

Copyright 2003 © Duane S. Boning.

Comparison of Treatments

Sample A Sample B Sample C

- Consider multiple conditions (treatments, settings for some variable) - There is an overall mean μ and real "effects" or deltas between conditions τ_{i}. - We observe samples at each condition of interest
- Key question: are the observed differences in mean "significant"?
- Typical assumption (should be checked): the underlying variances are all the same - usually an unknown value (σ_{0}^{2})

Steps/Issues in Analysis of Variance

1. Within group variation

- Estimates underlying population variance

2. Between group variation

- Estimate group to group variance

3. Compare the two estimates of variance

- If there is a difference between the different treatments, then the between group variation estimate will be inflated compared to the within group estimate
- We will be able to establish confidence in whether or not observed differences between treatments are significant
Hint: we'll be using F tests to look at ratios of variances

(1) Within Group Variation

- Assume that each group is normally distributed and shares a common variance $\sigma_{0}{ }^{2}$
- $\mathrm{SS}_{\mathrm{t}}=$ sum of square deviations within $\mathrm{t}^{\text {th }}$ group (there are k groups) $S S_{i}=\sum_{j=1}^{n_{t}}\left(y_{t}-\bar{y}_{t}\right)^{2}$ where n_{t} is number of samples in treatment t
- Estimate of within group variance in $t^{\text {th }}$ group (just variance formula) $s_{t}^{2}=S S_{i} / \nu_{t}=\frac{S S_{t}}{n_{t}-1} \quad$ where ν_{i} is d.o.f. in treatment t
- Pool these (across different conditions) to get estimate of common within group variance:

$$
s_{R}^{2}=\frac{\nu_{1} s_{1}^{2}+\nu_{1} s_{1}^{2}+\cdots+\nu_{h} s_{k}^{2}}{\nu_{1}+\nu_{2}+\cdots+\nu_{k}}=\frac{S S_{R}}{\nu_{R}}=\frac{S S_{R}}{N-k}
$$

- This is the within group "mean square" (variance estimate)

$$
M S_{R}=\frac{S S_{R}}{\nu_{R}}=s_{R}^{2}
$$

Copyright 2003 © Duane S. Boning.

(2) Between Group Variation

- We will be testing hypothesis $\mu_{1}=\mu_{2}=\ldots=\mu_{k}$
- If all the means are in fact equal, then a $2^{\text {nd }}$ estimate of σ^{2} could be formed based on the observed differences between group means:
$s_{T}^{2}=\frac{\sum_{t=1}^{k} n_{t}\left(\overline{y_{t}}-\bar{y}\right)^{2}}{k-1} \quad \begin{aligned} & \text { where } n_{i} \text { is number of samples in treatment } t \\ & \text { and } k \text { is the number of different treatment } s\end{aligned}$
- If all the treatments in fact have different means, then $\mathrm{S}_{\mathrm{T}}{ }^{2}$ estimates something larger:
$s_{T}^{2} \simeq \sigma_{0}^{2}+\frac{\sum_{t=1}^{k} n_{t} \tau_{t}^{2}}{k-1} \quad \begin{aligned} & \text { where } \tau_{t} \text { is the (real) difference between } \\ & \begin{array}{c}\text { group } t \text { mean and the grand mean } \mu \\ \text { Variance is "inflated" by the } \\ \text { real treatment effects } \tau_{t}\end{array} \\ & \text { opyright } 2003 \text { © Duane } \mathrm{S} \text {. Boning. }\end{aligned}$

(3) Compare Variance Estimates

- We now have two different possibilities for $\mathrm{s}_{\mathrm{T}}{ }^{2}$, depending on whether the observed sample mean differences are "real" or are just occurring by chance (by sampling)
- Use F statistic to see if the ratios of these variances are likely to have occurred by chance!
- Formal test for significance:

Reject H_{0} (no mean difference) if $\frac{s_{T}^{2}}{s_{R}^{2}}$ is significantly greater than 1.

(4) Compute Significance Level

- Calculate observed F ratio (with appropriate degrees of freedom in numerator and denominator)
- Use F distribution to find how likely a ratio this large is to have occurred by chance alone
- This is our "significance level"
- If $F_{0}=s_{T}^{2} / s_{R}^{2}>F_{\alpha, k-1, N-k}$ then we say that the mean differences or treatment effects are significant to ($1-\alpha$) 100% confidence or better

(5) Variance Due to Treatment Effects

- We also want to estimate the sum of squared deviations from the grand mean among all samples:
$S S_{D}=\sum_{i=1}^{k} \sum_{i=1}^{n_{i}}\left(y_{l i}-\bar{y}\right)^{2}$
$s_{j}^{2}=S S_{D} / \nu_{D}=\frac{S S_{D}}{N-1}=M S_{D}$
where N is the total mmber of measurements

(6) Results: The ANOVA Table

source of variation	sum of squares	degrees of freedom	mean square	F_{0}	$\operatorname{Pr}\left(F_{0}\right)$
Between treatments	$S S_{T}$	$k-1$	$s_{T}^{2}=\frac{S S_{T}}{k-1}$	$\frac{s_{T}^{2}}{s_{R}^{2}}$	table
Within treatments	Also referred to as "residual" SS				
	$S S_{R}$	$N-k$	$s_{R}^{2}=\frac{S S_{R}}{N-k}$		
Total about the grand average	$S S_{D}$	$N-1$	$s_{D}^{2}=\frac{S S_{D}}{N-1}$		
$S S_{D}=S S_{T}+S S_{A}$			$\nu_{D}=\nu_{T}+\nu_{B}$		
Copyright 2003 @ Duane S. Boning.					12

Example: Anova

Excel: Data Analysis, One-Variation Anova
Anova: Single Factor

$S S_{1}$	$=(12-11)^{2}+(11-11)^{2}+(10-11)^{2}=2$
$S S_{2}$	$=2^{2}+0^{2}+2^{2}=8$
$S S_{3}$	$=1^{2}+0^{2}+1^{-1} 2$
s_{1}^{2}	$=M S_{1}=S S_{1} / 2=2 / 2=1$
s_{5}^{2}	$=M S_{2}=8 / 2=4$
s_{3}^{2}	$=M S_{3}=2 / 2=1$
s_{R}^{2}	$=\frac{S S_{1}+S S_{3}+S S_{3}}{N-k}=\frac{12}{6}=2$
s_{T}^{2}	$=\frac{3(11-10)^{2}+3(8-10)^{2}+3(11-10)^{2}}{3-1}$
	$=\frac{S S_{T}}{\nu_{T}}=\frac{18}{2}=9$

ANOVA - Implied Model

- The ANOVA approach assumes a simple mathematical model:

$$
\begin{aligned}
y_{t i} & =\mu+\tau_{t}+\epsilon_{t i} \\
& =\mu_{t}+\epsilon_{t i}
\end{aligned}
$$

- Where μ_{t} is the treatment mean (for treatment type t)
- And τ_{t} is the treatment effect
- With $\varepsilon_{\mathrm{ti}}$ being zero mean normal residuals $\sim \mathrm{N}\left(0, \sigma_{0}{ }^{2}\right)$
- Checks
- Plot residuals against time order
- Examine distribution of residuals: should be IID, Normal
- Plot residuals vs. estimates
- Plot residuals vs. other variables of interest

MANOVA - Two Dependencies

- Can extend to two (or more) variables of interest. MANOVA assumes a mathematical model, again simply capturing the means (or treatment offsets) for each discrete variable level:

$$
\begin{aligned}
& y_{l i}=\mu+\tau_{l}+\hat{\beta}_{i}+\epsilon_{t i} \\
& \hat{y}_{t i}=\hat{\mu}+\hat{\gamma}_{t}+\hat{\beta}_{i}
\end{aligned}
$$

\# model coeffs $=1+k+n$
\# independent model coeffs $=\stackrel{\uparrow}{1}+\left(\begin{array}{c}\uparrow \\ k-1)\end{array}+\left(\begin{array}{c}\uparrow \\ n-1)\end{array}\right.\right.$
Recall that our $\dot{\tau}_{t}$ are not all independent model coefficients, because $\sum \tau_{t}=0$. Thus we really only have $k-1$ independent model coeffs, or $\nu_{t}=k-1$.

- Assumes that the effects from the two variables are additive

Example: Two Factor MANOVA

- Two LPCVD deposition tube types, three gas suppliers. Does supplier matter in average particle counts on wafers?
- Experiment: 3 lots on each tube, for each gas; report average \# particles added

MANOVA - Two Factors with Interactions

- May be interaction: not simply additive - effects may depend

$t=$ first factor $=1,2, \ldots k \quad(k=$ \# levels of first factor)
$\mathrm{t}=$ first factor $=1,2, \ldots \mathrm{k} \quad(\mathrm{k}=\#$ \# evels of first factor $)$
$\begin{array}{ll}i=\text { second factor }=1,2, \ldots n & (n=\# \text { levels of second factor) } \\ i=\text { replication }=1,2, \ldots m & (m=\# \text { replications at } t \text {, jth combination of factor levels }\end{array}$
- Can split out the model more explicitly..

$$
\text { Estimate by: } \quad \begin{aligned}
\hat{y}_{t i j} & =\bar{y}+\left(\overline{y_{t}}-\bar{y}\right)+\left(\overline{y_{i}}-\bar{y}\right)+\left(\bar{y}_{t i}+\bar{y}_{t}-\overline{y_{i}}+\bar{y}\right) \\
\omega_{t i} & =\text { interaction effects }=\left(\bar{y}_{t i}+\overline{y_{t}}-\bar{y}_{i}+\bar{y}\right) \\
\tau_{t}, \bar{\beta}_{i} & =\text { main effect }
\end{aligned}
$$

MANOVA Table - Two Way with Interactions

source of variation	sum of squares	degrees of freedom	mean square	F_{0}	$\operatorname{Pr}\left(F_{0}\right)$
Between levels of factor 1 (T)	$S S_{T}$	$k-1$	s_{T}^{2}	s_{T}^{2} / s_{E}^{2}	table
Between levels of factor 2 (B)	$S S_{B}$	$n-1$	s_{B}^{2}	s_{B}^{2} / s_{E}^{2}	table
Interaction	$S S_{I}$	$(k-1)(n-1)$	s_{I}^{2}	s_{I}^{2} / s_{E}^{2}	table
Within Groups (Error)	$S S_{E}$	$n k(m-1)$	s_{E}^{2}		
Total about the grand average	$S S_{D}$	$n k m-1$			
Copyright 2003 © Duane S. Boning.					

Measures of Model Goodness - \mathbf{R}^{2}

- Goodness of fit $-R^{2}$
- Question considered: how much better does the model do that just using the grand average?

$$
R^{2}=\frac{\mathcal{S S _ { T }}}{S S_{D}}
$$

- Think of this as the fraction of squared deviations (from the grand average) in the data which is captured by the model
- Adjusted R^{2}
- For "fair" comparison between models with different numbers of coefficients, an alternative is often used

$$
R_{\mathrm{rdj}}^{2}=1-\frac{S S_{I R} / \nu_{l R}}{S S_{D} / \nu_{D}}=1-\frac{s_{R}^{2}}{s_{D}^{2}}
$$

- Think of this as (1 - variance remaining in the residual). Recall $v_{R}=v_{D}-v_{T}$

Regression Fundamentals

- Use least square error as measure of goodness to estimate coefficients in a model
- One parameter model:
- Model form
- Squared error
- Estimation using normal equations
- Estimate of experimental error
- Precision of estimate: variance in b
- Confidence interval for β
- Analysis of variance: significance of b
- Lack of fit vs. pure error
- Polynomial regression

Least Squares Regression

- We use least-squares to estimate coefficients in typical regression models
- One-Parameter Model:

$$
\begin{aligned}
& y_{i}=B x_{i}+t_{i}, i=1,2, \ldots, n \\
& \hat{y}_{i}=b x_{i}
\end{aligned}
$$

- Goal is to estimate β with "best" b
- How define "best"?
- That b which minimizes sum of squared error between prediction and data
$S S(\beta)=\sum_{i-1}^{n}\left(y_{i}-\hat{y_{i}}\right)^{2}=\sum_{i-1}^{n}\left(y_{i}-\beta x_{i}\right)^{2}$
- The residual sum of squares (for the best estimate) is

$S S_{\text {min }}=\sum_{i-1}^{n}\left(y_{i}-b x_{i}\right)^{2}=S S_{R}$
Copyright 2003 © Duane S. Boning.

Least Squares Regression, cont.

- Least squares estimation via normal equations
- For linear problems, we need not calculate SS(β); rather, direct solution for b is possible
- Recognize that vector of residuals will be normal to vector of x values at the least squares estimate

$$
\begin{aligned}
\sum(y-\hat{y}) x & =0 \\
\sum(y-b x) x & =0 \\
\sum x y & =\sum b x^{2} \\
& \Rightarrow b=\sum_{\sum x y} x x^{2}
\end{aligned}
$$

- Estimate of experimental error
- Assuming model structure is adequate, estimate s^{2} of σ^{2} can be obtained:

$$
s^{2}=\frac{S S_{\Pi}}{n-1}
$$

Precision of Estimate: Variance in b

- We can calculate the variance in our estimate of the slope, b :

$$
\begin{array}{cc}
\hat{V}(b)=\frac{s^{2}}{\sum x_{i}^{2}} & \text { s.c. }(b)=\sqrt{\hat{V}(b)} \\
b \pm \text { s.e. }(b)
\end{array}
$$

- Why?

$$
\begin{aligned}
b & =\frac{x_{1}}{\sum x^{2}} \cdot y_{1}+\frac{x_{2}}{\sum x^{2}} \cdot y_{2}+\cdots \frac{x_{n}}{\sum x^{2}} \cdot y_{n} \\
& =a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{n} y_{n} \\
V(b) & =\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right) \sigma^{2} \\
& =\left[\left(\frac{x_{1}}{\sum x^{2}}\right)^{2}+\cdots+\left(\frac{x_{n}}{\sum x^{2}}\right)^{2}\right] \sigma^{2} \\
& =\frac{\sum x^{2}}{\left(\sum_{2} x^{2}\right)^{2}} \sigma^{2} \\
& =\frac{\sigma^{2}}{\sum x^{2}}
\end{aligned}
$$

Confidence Interval for β

- Once we have the standard error in b, we can calculate confidence intervals to some desired ($1-\alpha$)100\% level of confidence

$$
\frac{b-\beta}{\operatorname{s.c}(b)} \sim t \quad \Rightarrow \quad \beta=b \pm t_{\alpha / 2} \cdot \text { s.e. }(b)
$$

- Analysis of variance
- Test hypothesis: $H_{0}: \beta=b=0$
- If confidence interval for β includes 0 , then β not significant
- Degrees of freedom (need in order to use t distribution)

$$
\begin{aligned}
\sum y_{i}^{2} & =\sum \hat{y}_{i}^{2}+\sum\left(y_{i}-\hat{y}_{i}\right)^{2} \\
n & =p n n-p \\
p & =\# \text { parameters estimated } \\
& \text { by least squares }
\end{aligned}
$$

Example Regression

Copyright 2003 © Duane S. Boning

- Note that this simple model assumes an intercept of zero - model must go through origin
- We will relax this requirement soon

Lack of Fit Error vs. Pure Error

- Sometimes we have replicated data
- E.g. multiple runs at same x values in a designed experiment
- We can decompose the residual error contributions

$$
S S_{R}=S S_{L}+S S_{E}
$$

Where
$S S_{R}=$ residual sum of squares error $S S_{L}=$ lack of fit squared error $S S_{E}=$ pure replicate error

- This allows us to TEST for lack of fit
- By "lack of fit" we mean evidence that the linear model form is inadequate

$$
\frac{s_{L}^{2}}{s_{E}^{2}} \sim F_{\nu_{L}, \nu_{E}}
$$

Regression: Mean Centered Models

- Model form $\quad \eta=\alpha+\beta(x-\bar{x})$
- Estimate by $\hat{y}=a+b(x-\bar{x}), \quad y_{i} \sim \mathrm{~N}\left(\eta_{i}, \sigma^{2}\right)$

Minimize $S S_{R}=\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$ to estimate α and β
$a=\bar{y}$
$\mathrm{E}(a)=\alpha$
$b=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}$
$E(b)=\beta$
$\operatorname{Var}(a)=\operatorname{Var}\left[\frac{\left.\sum y_{i}\right]}{k}\right]=\frac{\sigma^{2}}{k}$
$\operatorname{Var}(b)=\frac{\sigma^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}$

Regression: Mean Centered Models

- Confidence Intervals

$$
\begin{aligned}
\bar{y}_{i} & =\bar{y}+b\left(x_{i}-\bar{x}\right) \\
\operatorname{Var}\left(\hat{y}_{i}\right) & =\operatorname{Var}(\bar{y})+\left(x_{i}-\bar{x}\right)^{2} \operatorname{Var}(b) \\
& =\frac{s^{2}}{n}+\sum^{\alpha^{2}\left(x_{i}-x\right)^{2}} \sum\left(x_{i}-x\right)^{2}
\end{aligned}
$$

- Our confidence interval on y widens as we get further from the center of our data!

$$
\begin{array}{r}
\hat{y}_{i} \pm t_{\alpha / 2} \sqrt{\operatorname{Var}\left(\hat{y}_{i}\right)} \\
\hat{y}_{i} \pm t_{\alpha / 2} \sqrt{\frac{s^{2}\left(x_{i}-\bar{x}\right)^{2}}{\sum\left(x_{i}-x\right)^{2}}}
\end{array}
$$

Polynomial Regression

- We may believe that a higher order model structure applies. Polynomial forms are also linear in the coefficients and can be fit with least squares

$$
\eta=\beta_{0}+\beta_{1} x+\beta_{2} x^{2} \quad \text { Curvature included through } x^{2} \text { term }
$$

- Example: Growth rate data

Regression Example: Growth Rate Data

- Replicate data provides opportunity to check for lack of fit

Growth Rate - First Order Model

- Mean significant, but linear term not
- Clear evidence of lack of fit

Analysis of variance for growth rate data: straight line model

source	sum of squates	degrees of freedom	mean square
model	$5^{24}=67,428.0$, $\left\{\begin{array}{l}\text { mean } 67,404.1 \\ \text { cetra for linear 24.5 }\end{array}\right.$	$2\left\{\begin{array}{l}1 \\ 1\end{array}\right.$	$\begin{gathered} 67,404.1 \\ 24.5 \end{gathered} \leftarrow$
res,dual \{lack of fil	$S_{A}=686.4\left\{\begin{array}{l}S_{i}=659.40 \\ S_{i}=270\end{array}\right.$	$8\left\{\begin{array}{l}4 \\ 4\end{array}\right.$	$85.8\left\{\begin{array}{c}164.85 \\ 6.75\end{array}\right.$ ratio $=24.42$
total	$S_{T}=68.115 .0$	10	

Copyright 2003 © Duane S. Boning.

Growth Rate - Second Order Model

- No evidence of lack of fit
- Quadratic term significant

Analysis of variance for growth mate data: quadratic model			
source	sum of squares	degrees of freedom	mean square
model	$S_{M}=68,071.8\left\{\begin{array}{l} \text { mean } 67,404,1 \\ \text { extra for lincar } 24.5 \\ \text { extra for quadratic } 643.2 \end{array}\right.$	$3\left\{\begin{array}{l} 1 \\ 1 \end{array}\right.$	$\begin{gathered} 67,404.1 \\ 24.5 \\ 643.2 \end{gathered}$
\rightarrow residual	$s_{\mathrm{n}}=43.2\left\{\begin{array}{l} s_{\mathrm{L}}=16.2 \\ s_{\mathrm{L}}=27.0 \end{array}\right.$	$\left\{\begin{array}{l} \} \\ 4 \end{array}\right.$	$\left\{\begin{array}{l} \{.40 \\ 6.75 \end{array} \text { ratio }=0.80\right.$
total	$s_{7}=68,115.0$	10	
Copyright 2003 ® Duane S . Boning. 32			

Polynomial Regression In Excel

- Create additional input columns for each input
- Use "Data Analysis" and "Regression" tool

Polynomial Regression

Summary

- Comparison of Treatments - ANOVA
- Multivariate Analysis of Variance
- Regression Modeling

Next Time

- \square Time Series Models
\bullet Forecasting

