Physics for Solid-State Applications

A 2-D crystal showing a regular lattice of atomic orbitals.

Top: schematic of a 2-D crystal showing a regular lattice of atomic oribitals. Bottom: the calculated electronic bandstructure as a function of the electron's crystal momentum (k). The core skills taught in this class will be to think of electron transport in k-space and to calculate the bandstructure as shown here. (Image by Rajeev Ram.)


MIT Course Number


As Taught In

Spring 2003



Cite This Course

Course Description

Course Features

Course Description

This course examines classical and quantum models of electrons and lattice vibrations in solids, emphasizing physical models for elastic properties, electronic transport, and heat capacity. Topics covered include: crystal lattices, electronic energy band structures, phonon dispersion relatons, effective mass theorem, semiclassical equations of motion, and impurity states in semiconductors, band structure and transport properties of selected semiconductors, and connection of quantum theory of solids with quasifermi levels and Boltzmann transport used in device modeling.

Related Content

Rajeev Ram, and Terry Orlando. 6.730 Physics for Solid-State Applications. Spring 2003. Massachusetts Institute of Technology: MIT OpenCourseWare, License: Creative Commons BY-NC-SA.

For more information about using these materials and the Creative Commons license, see our Terms of Use.