Notation

All vectors will be expressed as column vectors. The typographic convention used for a column vector \mathbf{x} is \vec{x}. Row vectors will be represented by the transpose of a column vector. For example, if we wish to represent the row vector:

$$
\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)
$$

we would first define a column vector:

$$
\vec{x}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Then, the row vector would be expressed as:

$$
\bar{x}^{T}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)^{T}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)
$$

 vector in MATLAB®, we use the transpose command "." So, \vec{x} of the previous example would be declared in MATLAB® ${ }^{\circledR}$ by " $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$.". Note, that the MATLAB® ${ }^{\circ}$ command " "" is really the adjoint (denoted as \dagger). The adjoint of a \vec{x} is defined as the complex conjugate of the transpose of \vec{x}, i.e. $\vec{x}^{\dagger}=\vec{x}^{* T}$. Of course for real vectors, the adjoint and the transpose are the same. Just beware when dealing with complex vectors!

