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|6.453 Quantum Optical Communication - Lecture 22

= Announcements
= Pick up lecture notes, slides
= Last lecture will be Tuesday, December 13t
= Term papers are due Tuesday, December 13t

= Quantum Signatures from Parametric Interactions
= Hong-Ou-Mandel dip produced by parametric downconversion

= Polarization entanglement produced by parametric downconversion
= Photon twins from parametric amplifiers
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]Quantum Interference Between Single Photons

= |nput State to 50/50 Beam Splitter: |1)s,. [1)z,,
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= Qutput State from 50/50 Beam Splitter:
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Hong-Ou-Mandel Interferometer

= Type-ll Experiment: /ﬁ
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= PPKTP: 795 nm output wavelength, Ak = —3.3ps/cm
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Hong-Ou-Mandel Coincidence Dip

= Average Low-Flux Coincidence Count in T,;-Sec-Long Gate:
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= Low-Flux Gaussian-State Coincidence Counting Theory:
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Polarization-Entanglement From Downconversion

= Anti-Phased Coherently-Pumped Type-ll Downconverters:
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Type-ll Optical Parametric Amplifier

= Doubly-Resonant Operation at Frequency Degeneracy
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= Normally-Ordered and Phase-Sensitive Covariances:
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Photon Twins from a Parametric Amplifier

= Signal-Minus-Idler Photon Count Difference
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= Unity-Quantum-Efficiency Detection

AN < AN = / Lt [Eg(t)ES(t) - E}(t)E‘,(t)]

(AN?) 1 — —2IT

(Ng) + (Ny) oU'T
Ly ,



www.rle.mit.edu/qoptics
www.rle.mit.edu/qoptics

] Photon Twins from a Parametric Amplifier

= Signal-Count and Signal-Minus-Idler Count Variances
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Coming Attractions:

Lecture 23

= | ecture 23:

More Quantum Optical Applications

= Binary optical communication with squeezed states
= Phase-sensing interferometry with squeezed states

= Super-dense coding with entangled states
= Quantum lithography with “NOON” states
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