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Introduction

The final major question we shall address this semester is the following. How can
we create non-classical light beams that exhibit the signatures we’ve discussed in
our simple one-mode and two-mode analyses? In particular, we will study spon-
taneous parametric downconversion and optical parametric amplification in second-
order nonlinear crystals. These closely-related processes have been and continue to
be the primary vehicles for generating non-classical light beams. Given our inter-
est in the system-theoretic aspects of quantum optical communication—and our lack
of a serious electromagnetic fields prerequesite—we shall tread lightly, focusing on
the coupled-mode equations characterization of collinear configurations, i.e., we shall
suppress transverse spatial effects. Nevertheless, we will be able to get to the basic
physics of these interactions and provide continuous-time versions of the non-classical
signatures that we discussed in single-mode and two-mode forms earlier this term.
Today, however, we will begin with a treatment within the classical domain. In the
two lectures to follow we will convert today’s material into the quantum domain, and
then explore the implications of that quantum characterization.

Spontaneous Parametric Downconversion

Slide 3 shows a conceptual picture of spontaneous parametric downconversion (SPDC).
A strong laser-beam pump is applied to the entrance facet (at z = 0) of a crystalline
material that possesses a second-order (χ(2)) nonlinearity. We will only concern our-
selves with continuous-wave (cw) pump fields, so this pump beam will be taken to
be monochromatic at frequency ωP . Even though the only light applied to the crys-
tal is at frequency ωP , three-wave mixing in this nonlinear material can result in
the production of lower-frequency signal and idler waves, with center frequencies ωS
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and ωI , respectively, that emerge—along with the transmitted pump beam—from the
crystal’s output facet (at z = l). This process is downconversion, because the signal
and idler light arises from a higher-frequency pump beam. The process is deemed
parametric, because the downconversion is due to the presence of the pump modifying
the effective material parameters encountered by the fields propagating at the signal
and idler frequencies. It is called spontaneous , because there is no illumination of
the crystal’s input facet at the signal and idler frequencies. Of course, this zero-field
input statement is correct in a classical physics description of slide 3. We know, from
our quantum description of the electromagnetic field, that the positive-frequency field
operator at the crystal’s input facet must include components at both the signal and
idler frequencies. In SPDC, the z = 0 signal and idler frequencies are unexcited, i.e.,
in their vacuum states. The action of the pump beam in conjunction with the crys-
tal’s nonlinearity is responsible for the excitation at these frequencies that is seen at
z = l. Thus, although a quantum analysis will be required to understand the SPDC
process, we will devote the rest of today’s effort to a classical treatment of the slide 3
configuration. Nevertheless, we shall get a hint of the quantum future because the
signal and idler frequencies, in the classical theory, will obey ωS + ωI = ωP . Zero-
valued input fields at the signal and idler frequencies cannot account for the energy
in non-zero signal and idler output fields. Instead, the energy present in these output
fields must come from the pump beam. Rewriting the preceding frequency condition
as ~ωS +~ωI = ~ωP at least suggests that a photon fission process—in which a single
pump photon spontaneously downconverts into a signal photon plus an idler photon
such that energy is conserved—is what is happening in SPDC. In fact, such is the
case.

Maxwell’s Equations in a Nonlinear Dielectric Medium

We will start our classical analysis of electromagnetic wave propagation in a χ(2)

medium from bedrock: Maxwell’s equations for propagation in a source-free region
of a nonlinear dielectric. In differential form, and without assuming any constitutive
laws, we have that

∂∇× ~E(~r, t) = − ~B(~r, t), Faraday’s law (1)
∂t

∇ · ~D(~r, t) = 0, Gauss’ law (2)

∂∇× ~H(~r, t) = ~D(~r, t), Ampère’s law (3)
∂t

∇ · ~B(~r, t) = 0, Gauss’ law for the magnetic flux density, (4)

~ ~ ~where E(~r, t) is the electric field, D(~r, t) is the displacement flux density, H(~r, t) is
~the magnetic field, and B(~r, t) is the magnetic flux density. All of these fields are real
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valued and in SI units. For dielectrics, we can take

~ ~B(~r, t) = µ0H(~r, t), (5)

where µ0 is the permeability of free space, as one of the material’s constitutive laws.
The other free-space constitutive law is

~ ~D(~r, t) = ε0E(~r, t), (6)

where ε0 is the permittivity of free space.1 However, for the nonlinear dielectric of
interest here we will use

~ ~ ~D(~r, t) = ε0E(~r, t) + P (~r, t), (7)

~where P (~r, t) is the material’s polarization, which is a nonlinear function of the electric
field.

Our initial objective is to reduce Maxwell’s equations to a wave equation for a
+z-propagating plane wave. Taking the curl of Faraday’s law, employing the vector
identity

∇× ~ ~ ~[∇× F (~r, t)] = ∇[∇ · F (~r, t)]−∇2F (~r, t), (8)

and Ampère’s law, we get

∂∇[∇ · ~ ~E(~r, t)]−∇2E(~r, t) = −µ0
∂2

~[
∂t
∇×H(~r, t)] = −µ0

~D(~r, t). (9)
∂t2

For a +z-propagating plane wave whose electric field is orthogonal to the z axis, the
preceding result simplifies to

∂2 ∂2
~E(z, t)

∂z2
− µ0

~D(z, t) = ~0. (10)
∂t2

Before moving on to propagation in the nonlinear medium, let’s examine the wave
~ ~solutions to Eq. (10) in free space and in a linear dielectric. Using D(z, t) = ε0E(ζ, t),

for free space, Eq. (10) becomes

∂2 1~E(z, t)
∂z2

−
c2

∂2
~E(z, t) = ~0, (11)

∂t2

where we have used c = 1/
√
ε0µ0. It easily verified—recall Lecture 17—that

~E(z, t) = f(t− z/c)~if , (12)

1In terms of ε0 and µ0 we have that c = 1/
√
ε0µ0 is the speed of light in vacuum, as shown in

Lecture 17.
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is a solution to Eq. (11) for an arbitrary time function f(t) and unit vector ~if in the
x-y plane.2 Moreover, this field is a +z-going plane wave, as was noted in Lecture 17.

Now suppose that we are interested in propagation through a linear dielectric. In
this case, and for the nonlinear case to follow, it is best to go to the temporal-frequency

~domain, i.e., we define the Fourier transform of a field F (~r, t) by

F~ (~r, ω) =

∫
~dt F (~r, t)ejωt. (13)

The sign convention here is in keeping with our quantum-optics notion of what con-
stitutes a positive-frequency field, viz., the inverse transform integral is

ω~F (~r, ) =

∫
d

t
2
F~ (~r, ω)e−jωt. (14)

π

The constitutive law for a linear dielectric is

D~ ~(~r, ω) = ε0[1 + χ(1)(ω)]E(~r, ω), (15)

where the linear susceptibility, χ(1)(ω), is a frequency-dependent tensor, so that the
polarization,

P~ ~(~r, ω) = ε0χ
(1)(ω)E(~r, ω), (16)

need not be parallel to the electric field. The tensor nature of the linear susceptibility
is the anisotropy that we exploited in our discussion, earlier this semester, of wave

~plates. Thus, if E(~r, ω) is polarized along a principal axis of the crystal—as we shall
assume in what follows—we have that

D~ ~(~r, ω) = ε0n
2(ω)E(~r, ω), (17)

is the appropriate constitutive relation, where n(ω) is the refractive index at frequency
ω for the chosen polarization. Now, if we take the Fourier transform of Eq. (10) and
presume fields with no (x, y) dependence with an electric field polarized along a
principal axis, we obtain the Helmholtz equation

∂2

∂z2
~E(z, ω) +

ω2n2(ω) ~
c

E~(z, ω) = 0. (18)
2

The +z-going plane-wave solution to this equation is

E~ ~(z, ω) = Re[Ee−j(ωt−kz)]. (19)

where k ≡ ~ωn(ω)/c and E is a constant vector in the x-y plane.

2To show that Eq. (11) provides a solution to Maxwell’s equations in free space, however, more
~work is needed. Faraday’s law should be used to derive the associated magnetic field, H(z, t), and

~ ~then it should be verified that E(z, t) and H(z, t) are solutions to the full set of Maxwell’s equations.
See Lecture 17 for more details.
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For a nonlinear dielectric we shall employ the following frequency-domain consti-
tutive relation:

D~ (1) E~ P~(~r, ω) = ε0[1 + χ (ω)] (~r, ω) + NL(~r, ω), (20)

where χ(1) ~(ω) is the medium’s linear susceptibility tensor at frequency ω and PNL(~r, ω)
~is the nonlinear polarization, i.e., PNL(~r, ω) is a nonlinear function of the electric field.

Assuming, as before, a +z-going plane wave whose electric field is polarized along a
principal axis of the χ(1)(ω) tensor, Eq. (18) becomes

∂2

∂z2
~E(z, ω) +

ω2n2(ω)
µ

c
E~(z, ω) =

2
− 0ω

2P~NL(z, ω), (21)

for the nonlinear dielectric. The left-hand side of this equation includes the medium’s
linear behavior, with its nonlinear character appearing as a source term on the right-
hand side. General solutions to this equation—for arbitrary nonlinearities—are be-
yond our reach. In the next section, however, we show how to do a coupled-mode
analysis that, when converted to quantum form in Lecture 21, will allow us to under-
stand how SPDC produces non-classical light.

Coupled-Mode Equations

Here we shall delve deeper into propagation through a nonlinear dielectric when that
material’s nonlinear polarization arises from a second-order nonlinearity. Unlike the
preceding section, which tried to work in generality, we will now assume that the
electric field propagating from z = 0 to z = l in the nonlinear crystal consists of three
+z-going monochromatic plane waves: the frequency-ωP pump beam; the frequency-
ωS signal beam; and the frequency-ωI idler beam. Furthermore, we will assume
that ωP = ωS + ωI and that the pump is very strong while the signal and idler are
very weak. Allowing—as will be necessary to account for the tensor properties of
the second-order susceptibility—the pump, signal, and idler to have different linear
polarizations along the crystal’s principal axes, we will take the electric field to be

~E(z, t) = Re[A (z)e−j(ωSt−kSz)︸ ]~S iS︷︷ +

signal

︸ Re[AI(z)e−j(ωI t−kIz)︸ ]~iI︷︷
idler

+ Re[AP e
−j(ωP t−kP z)]~iP

︸
︸ ︷︷ ︸, for 0 ≤ z ≤ l. (22)

pump

In this expression: km = ωmnm(ωm)/c for m = S, I, P gives the wave numbers of
the signal, idler, and pump fields in terms of the refractive indices, nm(ωm), of their
respective linear polarizations, ~im, which are all in the x-y plane. More importantly,
for what will follow, the signal and idler complex envelopes, AS(z) and AI(z), are
slowly-varying functions of z, i.e., they change very little on the scale of their field
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component’s wavelength.3 Also, the strong pump field has been taken to be non-
depleting, i.e., its complex envelope, AP , is a constant.4 These assumptions are
consistent with SPDC operation.

For the constitutive relation associated with the preceding electric field we will
assume that

ε0n
2
S(ωS)A~D(z, t) ≈ S(z)e−j(ωSt−kSz) + cc~iS

2

ε0n
2
I(ωI)AI(z)e−j(ωI t−kIz) + cc

+ ~iI
2

ε0n
2

+ P (ωP )AP e
−j(ωP t−kP z) + cc~iP
2

ε χ(2)A∗(z)A e−j[(ωP
0

+ I P
−ωI)t−(kP−kI)z] + cc~iS

2

ε χ(2)A∗ (z)A e−j[(ωP
0

+ S P
−ωS)t−(kP−kS)z] + cc~iI , (23)

2

where cc denotes complex conjugate. The first three terms on the right in Eq. (23)
are due to the material’s linear susceptibility. Except for the possibly different signal,
idler, and pump polarizations, it is the three-wave version of what we exhibited in
the previous section for a linear dielectric. The last two terms represent the effect
of the material’s second-order nonlinear susceptibility, χ(2). Strictly speaking, this
susceptibility is a frequency-dependent tensor that produces a nonlinear polarization
~PNL(z, t) when it is multiplied by the product of two electric-field frequency compo-
nents. In writing Eq. (23) we have suppressed the frequency dependence and tensor
character by our choice of fixed frequencies and polarizations in Eq. (22), and we
have only included second-order terms that appear at the signal or idler frequencies,
as these are the frequencies that will be of interest in what follows, viz., they represent
coupling between the signal and idler which is mediated by the presence of the strong
pump beam in the nonlinear crystal.

Let us substitute Eq. (23) into Eq. (10) and exploit the linear independence of
ejωt and e−jωt for ω 6= 0 to restrict our attention to the positive-frequency terms. We

3This assumption goes by the acronym SVEA, i.e., the slowly-varying envelope approximation.
4Strictly speaking, this no-depletion assumption cannot be exactly correct, as the pump beam

supplies the energy for the signal and idler outputs in SPDC. It is a good approximation for SPDC,
however, because the signal and idler outputs in typical operation are much weaker than the pump
beam.
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then find that the electric-field complex envelopes must obey

∂2 (
A (z)e−j(ωSt−kSz)~i + A (z)e−j(ωI t

S S I
−kIz)~iI + A j(ωP t kP z)~

P e
− − iP

∂z2

1

)
−

c2

∂2 (
n2 (ω )A (z)e−j(ωSt−kSz)~

∂ 2 S S S iS
t

+ n2
I(ωI)AI(z)e−j(ωI t−kIz)~iI + n2

P (ωP )AP e
−j(ωP t−kP z)~iP

χ(2)

)
−

c2

∂2 (
A∗ A I)

I(z) t
P e
−j[(ωP−ω −(kP−kI)z]~iS

∂t2

+ A∗S(z)AP e
−j[(ωP−ωS)t−(kP−kS)z]~iI

)
= ~0. (24)

Performing the z differentiations on the first line of Eq. (24) gives

∂2 (
A (z)e−j(ωSt−kSz)~i + A (z)e−j(ωI t−kIz)~

S S I i e (
I + AP

−j ωP t−kP z)~iP
∂z2 [

2 dAS(z)

)
= −kSAS(z) + 2jkS e

dz

]
−j(ωSt−kSz)~iS[

2 dAI(z)
+ −kIAI(z) + 2jkI

]
e−j(ωI t−kIz)~i − k2A e−j(ωP−kP z)~

I
dz P P iP , (25)

where we have employed the slowly-varying envelope approximation to suppress terms
involving ∂2

Am(z) for m = S, I. Performing the t differentiations on the second and
∂z2

third lines of Eq. (24) yields

1−
c2

∂2 (
n2 ) ωS
S(ωS AS(z)e−j( t−kSz)~i (ω k

S + n2
I(ωI)A

j I t Iz)~
I(z)e− − iI

∂t2

+ n2 (ω )A e−j(ωP t−kP z)~
P P P iP

= k2 ~
SAS(z)e−j(ωSt−kSz)i +

)
S k2

IAI(z)e−j(ωI t−kIz)~iI + k2
PAP e

−j(ωP t−kP z)~iP , (26)

where we have used km = ωmnm(ωm)/c for m = S, I, P . Using Eqs. (25) and (26) in
Eq. (24) leads to term cancellations5 that reduce the latter equation to(

dAS(z)
2jkS

χ(2)

e−j(ωSt−kSz) ω2

+ S

dz
A∗( k

I z)AP e
−j[ωSt−( P−kI)z]

c2

)
~iS

+

(
dAI(z)

2jkI
dz

e−j(ωI t−kIz) +
χ(2)ω2

I A∗ (z)A e−j[ωI t−(kP
S P

−kS)z]

)
~iI = ~0, (27)

c2

5These cancellations are to be expected, as the terms in question are those for a linear dielectric
and km = ωmnm(ωm)/c gives the plane-wave solutions for such media.
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where we have used ωP = ωS + ωI .
We will be interested in SPDC systems in which the signal and idler are in or-

thogonal linear polarizations. In this case, the preceding equation can be decomposed
into two coupled-mode equations:6

dAS(z) ωSχ
(2)AP

= j
dz

A∗
2cnS(ωS) I(z)ej∆kz (28)

dAI(z) ωIχ
(2)AP

= j
dz

A∗ k

cnI(ωI)
S(z)ej∆ z, (29)

2

for 0 ≤ z ≤ l, where ∆k ≡ kP − kS − kI . Equations (28) and (29) should be solved
subject to given initial conditions at z = 0, i.e., given values for AS(0) and AI(0).
Once AS(l) and AI(l) are found, the resulting electric field for z > l is then

~E(z, t) = Re[A (l)e−j(ωSt−kS l−ωS(z−l)/c)]~i + Re[A (l)e−j(ωI t−kI l−ωI(z−l)/c)
S S I ]~iI

+ Re[A e−j(ωP t
P

−kP l−ωP (z−l)/c)]~iP , (30)

i.e., free-space plane-wave propagation prevails.7 Here we can see why quantum
mechanics is needed to properly understand the SPDC process shown on slide 3. If
AS(0) = AI(0) = 0, in our classical analysis, then we get AS(l) = AI(l) = 0 from our

coupled-mode equations,8 ~and hence E(z, t) = Re[A ej(ωP t
P

−kP l−ωP (z−l)/c)]~iP for z > l.

Solution to the Coupled-Mode Equations

So far we have been working with Maxwell’s equations—and hence have developed
coupled-mode equations—in SI units, i.e., the complex envelopes AS(z), AI(z), and
AP have V/m units. Before solving the coupled-mode equations, it will be convenient
for us to convert them to photon units, so as to ease the transition we will make—in
Lecture 21—from the classical solution to the quantum version. The key to making
this conversion is power flow.

Consider a monochromatic, +z-going plane wave in an isotropic linear dielectric
whose electric and magnetic fields are

~ −j(ωt−kz) ~ ~E(z, t) = Re[Ae ]ix and H(z, t) = Re[cε0n(ω)Ae−j(ωt−kz)]~iy. (31)

6If we regard the signal-frequency and idler-frequency components of the total field as modes,
then these equations clearly couple them through the action of the strong pump beam and the
crystal’s χ(2) nonlinearity.

7Our analysis assumes that anti-reflection coatings have been applied to the crystal’s entrance
and exit facets.

8If this statement is not immediately obvious, see the next section, in which we present solutions
to the photon-units form of the coupled-mode equations
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The time-average power (in W) crossing an area A in a constant-z plane is

cε0n(ω)
S(z) =

A
A

2
| |2. (32)

Were A to be written in
√

photons/s units—for the chosen area A—we would get9

S(z) = ~ω|A|2 (33)

for the time-average power (in W) crossing the same area. It follows that

A|√
photons/s

=

√
cε0n(ω)A

A
2~ω

|V/m. (34)

Making this substitution in Eqs. (28) and (29) leads to the photon-units coupled-mode
equations,

dAS(z)
= jκA∗

dz I(z)ej∆kz (35)

dAI(z)
= jκA∗

dz S(z)ej∆kz, (36)

for 0 ≤ z ≤ l, where

κ ≡

√
~ωSωIωP

χ(2)AP (37)
2c3ε0nS(ωS)nI(ωI)nP (ωP )A

is a complex-valued coupling constant that is proportional to the pump’s complex
envelope and the crystal’s second-order nonlinear susceptibility.

The preceding photon-units coupled-mode equations have the following solution,

l
AS(l) =

[(
j∆k

cosh(pl)− sinh(pl)

2

sinh(
A

pl

)
pl)

S(0) + jκl A∗
pl I(0)

]
ej∆kl/2 (38)

AI(l) =

[(
j∆kl

cosh(pl)− sinh(pl)

2

sinh(
A

pl

)
pl)

I(0) + jκl A∗
pl S(0)

]
ej∆kl/2, (39)

where
p ≡

√
|κ|2 − (∆k/2)2, (40)

as the reader may want to verify by substituting these results into the coupled-mode
equations. Equations (38) and (39) have two interesting features that are worth

9We have chosen
√

photons/s units, which require us to account for a cross-sectional area, to
avoid needing an explicit area factor when we examine the continuous-time photodetection statistics
of our SPDC model.
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noting at this time. The first concerns phase matching. The second is a prelude to
our quantum treatment of SPDC.

Inside the crystal, the monochromatic signal, idler, and pump beams—at frequen-
cies ωS, ωI , and ωP , respectively, propagate at their phase velocities, vm(ωm) = ωm/km
for m = S, I, P . The nonlinear interaction governed by the coupled-mode equa-
tions Eqs. (35) and (36) is said to be phase matched when ∆k = 0, i.e., when
ωP/vP = ωS/vS + ωI/vI . For a phase-matched system the coupled-mode equations
simplify to

dAS(z) dA
= jκA∗

I(z)

dz I(z) and = jκA∗
dz S(z), for 0 ≤ z ≤ l, (41)

which shows that the phase angle of the coupling between the signal and idler remains
the same throughout the interaction. On the other hand, when phase-matching is
violated, the phase of the coupling between the signal and idler rotates as these
fields propagate through the crystal. As a result, the solution to the phase-matched
coupled-mode equations,

κ
AS(l) = cosh(|κ|l)AS(0) + j sinh(

|κ
|κ|l)A∗

| I(0) (42)

κ
AI(l) = cosh(|κ|l)AI(0) + j sinh(

κ
|κ|l)A∗ (0)

| S , (43)
|

shows increasing amounts of signal-idler coupling with increasing |κ|l, i.e., with in-
creasing pump power or crystal length. In contrast, far from phase matching—when
|∆k/2| � |κ|—we get p ≈ j|∆k|/2, whence[

sin(∆kl/2)
AS(l) ≈ [cos(∆kl/2)− j sin(∆kl/2)]AS(0) + jκl A∗ ∆

I(0)

]
ej kl/2 (44)

∆kl/2

sin(∆kl/2)
AI(l) ≈

[
[cos(∆kl/2)− j sin(∆kl/2)]AI(0) + jκl A∗ ∆

kl/2 S(0)

]
ej kl/2,(45)

∆

which further reduce to

AS(l) ≈ AS(0) and AI(l) ≈ AI(0), (46)

when |∆kl/2| � 1, i.e., when the crystal is long enough that the phase mismatch,
∆k 6= 0, rotates the signal-idler coupling phase through many 2π cycles. Phase
matching is critical to SPDC; in terms of photon fission, for every 106 pump photons,
we may get only one signal-idler pair from a phase-matched interaction.

Photon fission is a good place to start our comments about the quantum form of
the coupled-mode equations. We have already noted that ωP = ωS + ωI is consistent
with the photon-fission energy conservation principle: ~ωP = ~ωS + ~ωI . The mo-
mentum of a +z-going single photon at frequency ω is +z-directed with magnitude
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~ωn(ω)/c in a medium with refractive index n(ω). Thus our phase-matching condi-
tion, kP = kS +kI , becomes photon-fission momentum conservation, ~kP = ~kS +~kI ,
when applied at the single-photon level. Photons being produced in pairs smacks of
the two-mode parametric amplifier that we studied earlier in the semester. That
system was governed by a two-mode Bogoliubov transformation,

âout = µâin + νâin out in
S I

† and âI = µâ 2
S + νâin

I S
†, where |µ| − |ν|2 = 1. (47)

Comparing Eq. (47) with Eqs. (42) and (43) reveals a great similarity. Indeed, if
we change field complex envelopes and their conjugates to annihilation operators
and creation operators, respectively, the latter two equations become a two-mode
Bogoliubov transformation with10

κ
µ ≡ cosh(|κ|l) and ν ≡ j sinh( κ

κ
| |l). (48)

| |

The Road Ahead

In the next lecture we shall develop the quantum treatment of SPDC and the optical
parametric amplifier (OPA), which is SPDC enhanced by placing the nonlinear crys-
tal inside a resonant optical cavity. We shall also begin studying the non-classical
behavior that can be seen in continuous-time photodetection using the outputs from
SPDC and the OPA.

10Even for the general case of ∆k 6= 0, changing the field complex envelopes and their conjugates
into annihilation and creation operators, respectively, converts the classical coupled-mode input-
output relation into a two-mode Bogoliubov transformation. When |∆kl/2| � 1, however, that
two-mode Bogoliubov transformation will have µ ≈ 1 and ν ≈ 0.
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