

6.453 Quantum Optical Communication — Lecture 2

- Handouts
 - Lecture notes, slides
 - if you missed Lecture 1, see instructor after class
- Fundamentals of Dirac-Notation Quantum Mechanics
 - Quantum systems
 - States as ket vectors
 - State evolution via Schrödinger's equation
 - Quantum measurements observables

rle III

www.rle.mit.edu/qoptio

Quantum Systems and Quantum States

■ Definition 1:

A quantum-mechanical system $\mathcal S$ is a physical system governed by the laws of quantum mechanics.

■ Definition 2:

The state of a quantum mechanical system at a particular time t is the sum total of all information that can be known about the system at time t. It is a ket vector $|\psi(t)\rangle$ in an appropriate Hilbert space $\mathcal{H}_{\mathcal{S}}$ of possible states. Finite energy states have unit length ket vectors, i.e., $\langle \psi(t)|\psi(t)\rangle=1$.

rle III

3

Time Evolution via the Schrödinger Equation

• Axiom 1:

For $t \geq 0$, an isolated system with initial state $|\psi(0)\rangle$ will reach state

 $|\psi(t)\rangle = \hat{U}(t,0)|\psi(0)\rangle$

where $\hat{U}(t,0)$ is the unitary time-evolution operator for the system \mathcal{S} . $\hat{U}(t,0)$ is obtained by solving

$$j\hbar \frac{\mathrm{d}\hat{U}(t,0)}{\mathrm{d}t} = \hat{H}\hat{U}(t,0), \quad \text{for } t \ge 0, \text{ with } \hat{U}(0,0) = \hat{I}$$

where \hat{H} is the Hamiltonian (energy) operator for \mathcal{S} . Equivalently, we have the Schrödinger equation

$$j\hbar \frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = \hat{H}|\psi(t)\rangle, \quad \text{for } t \geq 0, \text{ with } |\psi(0)\rangle \text{ initial condition}$$

rle IIII

www.rle.mit.edu/qoptics

Quantum Measurements: Observables

Axiom 2:

An observable is a measurable dynamical variable of the quantum system \mathcal{S} . It is represented by an Hermitian operator which has a complete set of eigenkets.

Axiom 3:

For a quantum system $\mathcal S$ that is in state $|\psi(t)\rangle$ at time t, measurement of the observable

$$\hat{O} \equiv \sum_{n} o_n |o_n\rangle\langle o_n|$$

yields an outcome that is one of the eigenvalues, $\{o_n\}$, with

$$Pr(outcome = o_n) = |\langle o_n | \psi(t) \rangle|^2$$

rle U

5

www.rle.mit.edu/gopti

Quantum Measurements: Observables

Projection postulate:

Immediately after a measurement of an observable \hat{O} , with distinct eigenvalues, yields outcome o_n the state of the system becomes $|o_n\rangle$.

Axiom 3a:

For a quantum system ${\cal S}$ that is in state $|\psi(t)\rangle$ at time t , measurement of the observable

$$\hat{O} = \int_{-\infty}^{\infty} do \, o |o\rangle \langle o|$$

yields an outcome that is one of the eigenvalues, o, with

$$p(o) = |\langle o|\psi(t)\rangle|^2$$

rle III

www.rle.mit.edu/qoptic

Coming Attractions: Lectures 3 and 4

Lecture 3:

Fundamentals of Dirac-Notation Quantum Mechanics

- Quantum measurements statistics
- Schrödinger picture versus Heisenberg picture
- Heisenberg uncertainty principle

Lecture 4:

Quantum Harmonic Oscillator

- Quantization of a classical LC circuit
- Annihilation and creation operators
- Energy eigenstates number-state kets

www.rle.mit.edu

MIT OpenCourseWare https://ocw.mit.edu

6.453 Quantum Optical Communication Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.