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Continuous-time theories of coherent detection: semiclassical and quantum

Introduction

Today we will complete our two-lecture treatment of semiclassical versus quantum
photodetection theory in continuous time, focusing our attention on the coherent de-
tection scenarios of homodyne and heterodyne detection. As we did last time for
direct detection, we will build these theories in a scalar-wave, quasimonochromatic
framework in which there is no (x, y) dependence for the fields illuminating the active
region of the photodetector.1 The particular tasks we have set for today’s lecture
are like those we pursued last time: develop the semiclassical and quantum pho-
todetection statistical models for homodyne and heterodyne detection, and exhibit
some continuous-time signatures of non-classical light. However, because the signa-
tures that we will examine rely on noise spectral densities, it will be useful for us to
back up and elaborate on the direct-detection photocurrent noise spectrum that we
considered briefly in the Lecture 18.

Semiclassical versus Quantum Photocurrent Statistics

For the almost-ideal photodetector—perfect, except for its 0 < η ≤ 1 quantum
efficiency—the semiclassical theory of photodetection states that, given the illumi-
nation power {P (t) : −∞ < t < ∞}, the photocurrent { i(t) : −∞ < t < ∞} is
an inhomogeneous Poisson impulse train. In particular, if {N(t) : t0 ≤ t } is the
photocount record starting at time t0, then

dN(t)
i(t) = q , for t

dt
≥ t0. (1)

The photocount record is a staircase function, n u(t− tn), comprised of unit height
steps located at the photodetection event times, { tn : 1 ≤ n < ∞}. Thus the
photocurrent is a train of area-q impulses, q

∑
∑

n δ(t − tn), that are located at those

1For the quantum case, this means that only the normally-incident plane wave components of
the incident field operator have non-vacuum states.
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photodetection event times. For both processes, it is the photodetection event times
that provide all the information. So, because these times are Poisson distributed
in the semiclassical theory, given the illumination power, N(t) is a Poisson count-
ing process and i(t) is a Poisson impulse train. In both cases the rate function is
λ(t) = ηP (t)/~ω0, where P (t) = ~ω0|E(t)|2 gives the short-time average power of the
quasimonochromatic illumination in terms of the classical, photon-units, baseband
complex field E(t).

The quantum theory for the photocurrent produced by our almost-ideal detector
is as follows. The observed classical i(t) has statistics that are identical to those of
the photocurrent operator

ˆ ˆ ˆi(t) ≡ qE ′†(t)E ′(t), (2)

where
Ê ′(t)

√≡ η Ê(t) +
√

ˆ1− η Eη(t). (3)

ˆ ˆHere, E(t) and Eη(t) are baseband field operators representing the illumination and
the effect of sub-unity quantum efficiency, respectively. They commute with each
other and with each other’s adjoint and satisfy the canonical commutation relations[

ˆ ˆ ˆE(t), E†(u)
]

= δ(t− u) and
[

ˆEη(t), Eη
†(u) = δ(t− u). (4)

ˆ

]
The modes associated with E(t) may be in arbitrary states, but those associated

ˆ ˆwith Eη(t) are in their vacuum states. When E(t) is in the coherent state |E(t)〉, the
photocurrent becomes an inhomogeneous Poisson impulse train with rate function
λ(t) = η|E(t)|2, and we recover the semiclassical theory by identifying the coherent-
state eigenfunction {E(t) : −∞ < t <∞} as the classical baseband field, in keeping
with2

〈E(t)|Ê(u)|E(t)〉 = E(u), for −∞ < u <∞. (5)

ˆWhen E(t) is in a classically-random mixture of coherent states—so that its den-
sity operator has a proper P representation—the quantum theory again reduces to
the semiclassical theory with E(t) being a random process whose statistics are given
by the P function. We call such states classical ; all other states are therefore non-
classical. It turns out that all non-classical states exhibit quantum photodetection
statistics in at least one of the three basic configurations—direct, homodyne, or het-
erodyne detection—that cannot be explained by semiclassical theory.3 In the rest of
this lecture we shall limit our attention to coherent detection, and, moreover, focus on

2This equation reveals a subtle defect in our coherent-state notation. It would be better, but
much less compact, to write the coherent state as |{E(t) : −∞ < t <∞}〉, to indicate that it is an
eigenstate of the field operator at all times with an eigenvalue, at time u, that is given by sampling
its associated eigenfunction, {E(t) : −∞ < t <∞}, at time t = u.

3We proved this statement for the single-mode case by showing that the statistics of heterodyne
detection determine the density operator. The same can be shown to be true for the continuous-time
case, e.g., by means of a modal expansion and our previous proof, but we will not supply the details.
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the photocurrent noise spectrum that is observed when the illumination is statistically
stationary.4

Photocurrent Statistics for Statistically Stationary Sources

The notion of statistical stationarity has to do with invariance to shifts in the time
origin. When a real-valued, classical random process x(t) is stationary (to at least
second order), its mean function will be a constant,

〈x(t)〉 = constant ≡ 〈x〉, (6)

and its covariance function will depend only on the time difference between the two
noise samples,

〈∆x(t+ τ)∆x(t)〉 = function of τ only ≡ Kxx(τ), (7)

where ∆x(t) ≡ x(t) − 〈x〉 is the noise part of the process, i.e., a zero-mean random
process equal to the difference between the original process x(t) and its mean 〈x〉.5

In semiclassical photodetection, the photocurrent i(t) will be stationary if the
illumination power P (t) is stationary, in which case we get

qη〈i〉 =
〈P 〉

and K
~ ii(τ) = q
ω0 ︸〈i〉δ(τ)︷︷ q2η2KPP (τ)

+

shot noise

︸ (~ω0)2︸ ︷︷ , (8)

excess noise

where our identification of the noise contributions was justified in

︸
Lecture 18. In

quantum photodetection theory, the corresponding results for a statistically station-
ary field state6 are as follows:

〈i〉 = qη〈Ê† ˆ(0)E(0)〉, (9)

and
ˆKii(τ) = 〈i〉 ˆ ˆ ˆ ˆ ˆq δ(τ) + q2η2

[
〈E†(τ)E†(0)E(τ)E(0)〉 − 〈E†(0)E(0)〉2

]
, (10)

where we exploited stationarity in the bracketed term, cf. the general result for the
non-stationary case given in Lecture 18.

4Statistical stationarity, of either classical stochastic processes or a mixed quantum state, should
not be confused with the notion of stationary quantum states for a system governed by a given
Hamiltonian.

5Processes that obey these two properties are said to exhibit wide-sense stationarity, which is a
weaker property than second-order stationarity. Processes that violate Eq. (6) but satisfy Eq. (7)
with ∆x(t) ≡ x(t)− 〈x(t)〉 are said to be covariance stationary.

6For our purposes, a statistically stationary field state is one that yields a quantum photodetection
theory photocurrent whose mean and covariance satisfy Eqs. (6) and (7), respectively.
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The photocurrent covariance function Kii(τ) quantifies the noise strength in i(t)
at any time through its value at τ = 0. This is because it gives us the noise variance
(mean-squared fluctuation strength in i(t)):

〈[∆i(t)]2〉 = Kii(0). (11)

The photocurrent covariance also provides a measure of the temporal behavior of the
noise in i(t) through the correlation coefficient,

ρii(τ) ≡ Kii(τ)/Kii(0). (12)

Indeed, when i(t) is known, the linear estimator

ĩ(t+ τ | t) ≡ 〈i〉+ ρii(τ)[i(t)− 〈i〉], (13)

has mean-squared error

〈[̃i(t+ τ | t)− i(t+ τ)]2〉 = 〈[∆i(t)]2〉[1− ρ2
ii(τ)]. (14)

So, when |Kii(τ)| ≈ Kii(0), knowledge of i(t) allows us to make a very low mean-
squared error prediction about i(t+ τ) by means of this linear estimator. Conversely,
when |Kii(τ)| � Kii(0), our linear estimate of i(t + τ) based on knowledge of i(t)
is little better than guessing i(t + τ) = 〈i〉.7 More importantly, for what will follow
today, the photocurrent covariance function provides, through its Fourier transform,
information about the frequency content in the photocurrent fluctuations.

The Photocurrent-Noise Spectral Density

For statistically stationary illumination, the photocurrent-noise spectral density is
defined to be the Fourier transform of its covariance function, i.e.,

∞
Sii(ω) ≡

∫
dτ Kii(τ)e−jωτ , (15)

−∞

from which the covariance function may be recovered via the inverse transform inte-
gral,

ω
Kii(τ =

∫ ∞ d
)

−∞

τ

2
S ω
ii(ω)ej . (16)

π

It is easily seen, from its definition, that Kii(τ) must be a real-valued, even function
of τ . It then follows that Sii(ω) must also be a real-valued, even function of its
argument, ω. As detailed in the supplementary notes on random processes—and

7It can be shown that Eq. (13) is the minimum mean-squared error (MMSE) linear estimator
of i(t + τ) given i(t). If i(t) is a Gaussian random process, then Eq. (13) provides the lowest
mean-squared error of any estimator for i(t+ τ) based on knowledge of i(t).
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shown schematically on slide 5—linear time-invariant filtering of i(t) results in an
output current

i′(t) ≡
∫ ∞

ds i(s)h(t− s), (17)
−∞

that is statistically stationary and has

〈i′〉 = H(0)〈i〉 and S 2
i′i′(ω) = Sii(ω)|H(ω)| , (18)

where h(t) is the filter’s impulse response and H(ω) is its frequency response.8 Taking
H(ω) to be the ideal bandpass filter with unilateral bandwidth ∆ω about center
frequency ωc, i.e.,

1, for ω ωc ∆ω/2,
H(ω) =

{
| ± | ≤

(19)
0, otherwise,

we can develop a physical interpretation for Sii(ω).
Suppose that Sii(ω) is a continuous function of frequency, and let us evaluate the

variance (mean-squared fluctuation strength) in the output current i′(t) obtained by
passing i(t) through the preceding bandpass filter as ∆ω → 0. We have that

ω〈[∆i′(t)]2〉 = Ki′ ′(0) =

∫ ∞ d
i

−∞

∞

i
2π
S ′i′(ω) = 2

∫
dω

0
i

2π
S ′i′(ω) (20)

= 2

∫ ∞dω

0

ω
2

ii
2π
S (ω)|H(ω)| = 2

∫
c+∆ω/2 dω

ωc−∆ω/2
ii

π
S (ω) ≈ (∆ω/π)Sii(ωc). (21)

2

Variances cannot be negative and ωc was arbitrary, so this calculation shows that
Sii(ω) ≥ 0 prevails at all frequencies. However, it is the physical interpretation of
Eq. (21) that we are really seeking. For the extremely narrowband passband filter,
we have that i′(t) consists of those components of the photocurrent i(t) that lie with
a 2∆ω bilateral bandwidth9 of the filter’s center frequency, all of which have been
passed by the filter without change. Thus the variance of i′(t) is the mean-squared
fluctuation strength in those frequency components of i(t). Equation (21) then tells us
that Sii(ωc)/2π is the mean-squared fluctuation strength per unit bilateral bandwidth
in the frequency ωc component of the process i(t).10 It is therefore appropriate to
refer to Sii(ω) as the noise spectrum or noise spectral density of the photocurrent
i(t).

8We have assumed that H(ω) is dimensionless, giving h(t) the units sec−1 and ensuring that i′(t)
has the units of current.

9Bilateral bandwidth means that we are including both the positive frequency and negative
frequency components.

10Here we are measuring bandwidth in rad/sec. If we measure bandwidth in Hz, then Sii(ω) is
the mean-squared fluctuation strength per unit bilateral bandwidth in the frequency ωc component
of the process i(t).
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The derivation we have provided in the previous paragraph was couched in terms
of the photocurrent-noise spectrum. It should be clear, however, that it applies to
the noise spectrum of any stationary random process. In particular, it applies to
the noise spectrum SPP (ω) of statistically stationary illumination power in semi-
classical photodetection. Thus, whereas quantum photodetection only requires the
photocurrent-noise spectrum that results from detection of statistically stationary
illumination to be non-negative, Fourier transformation of Eq. (8) gives the more
restrictive inequality stated last time, viz.,

q2η2 )Sii ω) = q〈i〉+
SPP (ω

(
q2η

q
(~ω0)2

≥ 〈i〉 =
〈P 〉

> 0, (22)
~ω0

where the last inequality assumes η〈P 〉 > 0, i.e., that there is non-zero illumina-
tion and non-zero detector efficiency. Equation (22) is the shot-noise limit on the
photocurrent-noise spectrum for statistically stationary illumination. Any quantum
state that leads to a sub-shot-noise spectrum, Sii(ω) < q〈i〉, must be a non-classical
state.

Balanced Homodyne Detection

Slide 7 shows the continuous-time configuration for balanced homodyne detection.
Signal light and local oscillator light are combined on a 50/50 beam splitter whose
output beams illuminate a pair of almost-ideal (quantum efficiency η) photodetectors.
The difference of the resulting photocurrents is passed through an ideal low-pass filter{

1, for
HLP(ω) =

|ω| ≤ ∆ω/2
(23)

0, otherwise,

to obtain the homodyne current ihom(t). The positive-frequency, photon-units signal
and local oscillator fields (classical) or field operators (quantum) in slide 7 have a
common center frequency√ ω0. The associated baseband classical fields are E(t) for the
signal and ELO = PLO/~ω0 e

jθ for the local oscillator. The associated baseband field
ˆ ˆop√erators are E(t) and ELO(t), where the latter is taken to be in the coherent state

| PLO/~ω0 e
jθ〉. For both the classical and quantum fields we will take PLO → ∞,

i.e., we will operate our balanced homodyne system in the strong local-oscillator limit.
From our semiclassical theory for continuous-time direct detection we have that

i (t) are inhomogeneous Poisson impulse trains with rate functions±

λ (t) = η±

∣∣∣E(t)± E∣ LO(t)√
2

∣∣∣∣2 =
η P

E
2

[
| (t)|2 LO

+
~ω0

± 2

√
PLO

Re[E(t)e−jθ]
~ω0

]
(24)

given knowledge of the signal field E(t). We then then find that

〈i+(t)− i (t)− 〉 = q[λ+(t)− λ (t)] = 2qη−

√
PLO

Re[E(t)e−jθ], (25)
~ω0
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which, assuming that the baseband classical field’s frequency content is limited to
|ω| ≤ ∆ω/2, is also the average homodyne current 〈ihom(t)〉. Thus our semiclassical
treatment shows that the homodyne current contains, in its mean, information about
the θ-quadrature of the baseband classical field E(t).11

Given knowledge of the signal field, E(t), the homodyne current’s covariance func-
tion is found to be

Kihomihom(t, u) ≡ 〈∆ihom(t)∆ihom(u)〉 = Ki′ i+
′
+

(t, u) +Ki′ i′ (t, u) (26)
− −

where i′ (t) denote the currents obtained by passing i (t) through the low-pass filter± ±
HLP(ω). Here, the second equality follows from the photocurrent noises being entirely
shot noises when the classical field is known, and the statistical independence of shot
noises from different photodetectors. In the strong local-oscillator limit, these shot
noises are predominantly due to the local oscillator, and before low-pass filtering we
get

q2ηPLO
Ki±i (t, u) =± δ(t

2~ω0

− u), (27)

i.e., before low-pass filtering the local-oscillator shot noises are statistically stationary
with white-noise (constant at all frequencies) spectra

q2ηPS LO
i±i (ω) =± . (28)

2~ω0

The preceding results allow us to establish the following semiclassical decomposi-
tion of the homodyne current:

ihom(t) = 2qη

√
PLO

Re[E(t)e−jθ] + i
~ LO(t), (29)
ω0

where E(t) can now be allowed to be a random process if necessary. Here, iLO(t) is
the low-pass filtered local-oscillator shot noise. It is a zero-mean, stationary random
process that is statistically independent of E(t) with noise spectrum given by

LO

SiLOiLO
(ω) =

 q2ηP

 ~ , forω0
|ω| ≤ ∆ω/2

(30)
0, otherwise.

Furthermore, the strong local-oscillator limit ensures that there will be a very large
number of local-oscillator induced photodetection events in the ∼1/∆ω time constant
of the low-pass filter. Hence the Central Limit Theorem implies that iLO(t) can be

11Equivalently, we can say that ihom(t) contains, in its mean, information about the positive-
frequency optical field, E(t)e−jω0t

〈 〉
, after it has been beat down to baseband—by mixing with the

frequency-ω0 local oscillator field and photodetection (an intrinsically square-law process)—and the
θ-quadrature has been extracted.
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taken to be a stationary Gaussian random process and thus completely characterized
by knowledge of its mean function 〈iLO〉 = 0 and its noise spectral density SiLOiLO

(ω).
From our quantum theory of continuous-time direct detection we have that the

photocurrents i (t) have statistics that are equivalent to those of the following pho-±
tocurrent operators,

ˆ
√

i (t)± ≡ q

[
ˆη [E(t)± ÊLO(t)]
√

2
+
√ †

ˆ1− η Eη (t)±

]

×

[√ ˆη [E(t)± ÊLO(t)]
√ +

2

√
− ˆ1 η Eη (t)±

]
, (31)

ˆwhere Eη (t) are vacuum-state field operators that account for the sub-unity quantum±

efficiencies of the two detectors. It is now easy to calculate that the photocurrent
difference, i+(t)− i (t), has statistics which are equivalent to−

î+(t)−ˆ ˆ ˆi (t) = 2qηRe[E(t)E†− LO(t)] + 2q
√
η − ˆ ˆ(1 η) Re[Eη(t)ELO

† (t)], (32)

ˆ ˆwhere we have suppressed terms involving Eη
† (t)Eη (t), because their measurement± ±

will always yield zero as these are photon-flux operators associated with vacuum-state
field operators, and we have introduced

ˆ ˆE
Êη(t) ≡

η+(t)− Eη (t)−√ , (33)
2

to account for the sub-unity quantum efficiency noises on the two detectors. In
arriving at Eq. (32) we have also omitted the signal×vacuum term

q
√

ˆ2η(1− η) Re{ ˆE(t)[Eη
†
+

(t)− Êη† (t)]− },

because it is insignificant, in the strong local-oscillator limit, relative to the terms we
have retained.

ˆ ˆThe field operator in Eq. (33) has the proper commutator,
[
Eη(t), Eη

†(u) = δ(t−
u), and is in its vacuum state. It can be shown—but we won’t do it—that the

]
strong

coherent-state local oscillator behaves classically in the preceding characterization of
î+(t)− î (t), i.e., Eq. (32) reduces to−

î+(t)− î (t) = 2qη−

√
PLO ˆRe[E(t)e−jθ] + 2q
~ω0

√
η(1− η)PLO ˆRe[Eη(t)e

−jθ]. (34)
~ω0

ˆBecause Eη(t) is in its vacuum state, it turns out that the second term on the right in
Eq. (34) is equivalent to a classical zero-mean, stationary Gaussian random process,
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iη(t), with the white-noise spectral density12

q2η(1Siηiη(ω) =
− η)PLO

. (35)
~ω0

Thus, incorporating iη(t) into Eq. (34) and applying the impulse response, hLP(t),
of the low-pass filter, we see that the homodyne photocurrent is equivalent to the
measurement of the following operator,

îhom(t) = 2qη

√
PLO ˆRe[E(t)e−jθ] ? hLP(t) + iη(t) ? hLP(t), (36)
~ω0

where ? denotes convolution. In words, we have that the homodyne photocurrent
consists of a scaled measurement of the low-pass filtered θ-quadrature of the baseband
signal field embedded in a low-pass filtered white Gaussian noise.

It is instructive to conclude this section by examining the quantum statistics for
ˆbalanced homodyne detection when the signal field E(t) is in the coherent state,

|E(t)〉, whose eigenfunction only contains frequencies satisfying |ω| ≤ ∆ω/2, so that
E(t) is unaffected by the low-pass filter. Equation (36) can then be used to show that
ihom(t) = 〈ihom(t)〉+ ∆ihom(t), where

〈ihom(t)〉 = 2qη

√
PLO

Re[E(t)e−jθ], (37)
~ω0

and ∆ihom(t) is a zero-mean, stationary Gaussian noise process, whose spectral density
is

q2η2PS LO
∆ihom∆ihom(ω) =

~ω0︸ ︷︷
q2η(1

+
− η)PLO

signal quantum

︸
noise

~ω0︸ ︷︷
q2ηPLO

=

η < 1 quantum noise

︸ , for ω
ω0

| | ≤ ∆ω/2.
~

(38)
Because the covariance function of ihom(t) equals the covariance function of ∆ihom(t)—
addition of a mean does not change covariances or noise spectral densities—the quan-
tum theory of continuous-time homodyne detection with a coherent-state signal field
yields measurement statistics that are identical to those of the semiclassical theory
when the latter employs deterministic illumination with the same baseband classical
field E(t). Both theories tell us that the mean photocurrent contains a scaled version
of the θ-quadrature of the baseband classical field E(t). Both theories tell us that
this mean is embedded in a zero-mean, bandlimited Gaussian noise with spectrum
q2ηPLO/~ω0. However, the physical interpretation of this noise is very different in

12To show that this is so, evaluate 〈 ˆ[Eη(t)e−jθ ˆ+Eη
† ˆ ˆ(t)ejθ][Eη(u)e−jθ +Eη

†(u)ejθ]〉 by multiplying
ˆout, employing the field commutator, and using the fact that the field Eη(t) has all its modes in

their vacuum states. This procedure will lead to a δ-function covariance expression whose Fourier
transform is the given noise spectrum.
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the two theories. In semiclassical theory it is local-oscillator shot noise, but in quan-
tum theory it is the due to the signal light quantum noise plus the quantum noise
contributed by having sub-unity quantum efficiency detectors.

In general, the semiclassical theory must have at least local-oscillator shot noise in
its homodyne noise spectrum, i.e., when Eθ(t) ≡ Re[E(t)e−jθ] is a stationary classical
random process semiclassical theory teaches that

q2ηPS LO
ihomihom(ω) =

~ω0︸ ︷︷
4q2η2PLO

+
SEθEθ(ω)

LO shot noise

︸ ~ω0︸ ︷︷ , for |ω| ≤ ∆ω/2, (39)

signal-beam excess noise

where both terms on the right are non-negative. On the

︸
other hand, the photocurrent-

noise spectrum from quantum photodetection theory, when the illumination is in a
statistically stationary field state, satisfies the weaker bound

q2η(1Sihomihom(ω)
− η)P≥ S LO

iηiη(ω) = , for
~ω0

|ω| ≤ ∆ω/2. (40)

Thus, whenever balanced homodyne detection yields a noise-spectrum measurement
obeying Sihomihom(ω) < q2ηPLO/~ω0, at some frequency within the loss-pass filter’s
passband, then we know that the signal beam was in a non-classical state.

Balanced Heterodyne Detection

Slide 9 shows the continuous-time configuration for balanced heterodyne detection.
It differs from the balanced homodyne arrangement that we have just considered in
two ways. First, the local oscillator is offset in frequency from the signal field we’re
trying to detect. Second, as a consequence of the first, we apply a bandpass filter
to the difference of the photocurrents from the two detectors. For the semiclassi-
cal treatment, the positive-frequency, photon-units signal field will be taken to be
ES(t)e−j(ω0+ωIF)t and the
taken

√positive-frequency, photon-units local oscillator field will be
to be ELOe

−jω0t = PLO/~ω e−jω0t
0 with PLO →∞. Here, ES(t) is a baseband

field and ωIF is the intermediate frequency, with the former allowed, in general, to
be a random process. For convenience, we shall assume that the bandpass filter has
frequency response {

1, for |ω ± ωIF| ≤ ∆ω/2
HBP(ω) = (41)

0, otherwise,

where ωIF > ∆ω/2. We shall also assume that Re[ES(t)e−jωIFt] is unaffected by
passage through this filter, i.e., its frequency content lies entirely within the fil-
ter’s passband. For the quantum approach, the positive-frequency, photon-units
field operator that enters the signal port in the slide 9 setup will be taken to be
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Ê(t)e−jω0t ˆ= E (t)e−j(ω0+ωIF)t ˆ
S +EI(t)e

−j(ω0−ωIF)t, and the positive-frequency, photon-
ˆunits local oscillator field operator will be taken to be E (t)e−jω0t

LO . Here, in anticipa-
ˆ ˆtion of the role played by the passband filter, ES(t) and EI(t) are baseband field oper-

ators whose modes only span the frequency range |ω| ≤ ∆ω/2. In keeping with what
we learned about single-mode heterodyne detection, we will allow the baseband signal-

ˆfield operator, ES(t), to be in an excited state and take the baseband image-band field
ˆoperator, EI(t), to be in√its vacuum state. The local oscillator will be assumed to

be in the coherent state | PLO/~ω0 e
−jω0t〉, with PLO → ∞. It is a measurement of

ˆboth quadratures of ES(t) that we are trying to accomplish with the slide 9 setup;
ˆthe noise contributed by the image-band operator EI(t) must be included in order to

accomplish this task without violating the Heisenberg uncertainty principle. The as-
ˆ −jω0t ˆ ˆtute reader will notice that E(t)e = ES(t)e−j(ω0+ωIF)t +EI(t)e

−j(ω0−ωIF)t does not
have the proper δ-function commutator, i.e., there are “other modes” that we have
neglected. Because these other modes will not contribute to the bandpass filter’s
output, in the strong local-oscillator limit, we have suppressed them at the outset in
order to simplify our analysis.

The semiclassical treatment of balanced heterodyne detection closely parallels
what we did for balanced homodyne detection. Suppose, for now, that ES(t) is a
deterministic baseband field. Then, the mean functions of the photocurrents i (t)±
are as follows:

〈i (t)± 〉 = qλ (t) = qη±

∣∣∣E∣ S(t)e−jωIFt ± ELO(t)√
2

2

∣∣∣∣ . (42)

From this result we immediately find that

〈i+(t)− i (t)− 〉 = 2qη

√
PLO

Re[E
~ S(t)e−jωIFt], (43)
ω0

and, because this signal is unaffected by the bandpass filter, we get

〈ihet(t)〉 = 2qη

√
PLO

Re[E (t)e−jωIFt], (44)
~ S
ω0

for the average heterodyne photocurrent when the signal light is deterministic. In the
strong local-oscillator limit the noise in i+(t)−i (t), when the signal field is known, is−
entirely local-oscillator shot noise, i.e., a zero-mean, white Gaussian noise with noise
spectral density q2ηPLO/~ω0. It follows that we can express ihet(t) in a form similar
to what we did in Eq. (29) for the homodyne current, viz.,

ihet(t) = 2qη

√
PLO

Re[E ) t
S(t e−jωIF ] + i (

~ LO t), (45)
ω0

where ES(t) can now be allowed to be a random process. Here, iLO(t) is the passband-
filtered local-oscillator shot noise. It is a zero-mean, stationary Gaussian random
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process that is statistically independent of ES(t) with noise spectrum given by,

LO

SiLOiLO
(ω) =

 q2ηP

 ~ , forω0
|ω ± ωIF| ≤ ∆ω/2

(46)
0, otherwise.

We see, from Eq. (45), that the semiclassical theory gives a heterodyne photocurrent
which contains a frequency-downtranslated (from ω0 + ωIF center frequency to ωIF

center frequency) replica of the signal field embedded in a passband-filtered white
Gaussian noise arising from local-oscillator shot noise.

For the quantum theory of balanced heterodyne detection, we rely on what we
did for the quantum theory of balanced homodyne detection. Specifically, we can
say that i+(t) and i (t) have statistics that are equivalent to those of the quantum−
operators î+(t) and î (t), respectively, where−

î+(t)−ˆ ˆi (t) = 2qηRe[E(t)E∗− LO(t)] + iη(t), (47)

where we have used the strong local-oscillator condition to justify replacing the local-
oscillator field operator with its coherent-state eigenfunction ELO(t) ≡

√
PLO/~ω0 e

−jω0t,
and iη(t) is a classical, zero-mean, white Gaussian noise process with spectral density

q2η(1S LO
iηiη(ω =

− η)P
) , (48)

~ω0

representing the quantum noise contributed by sub-unity quantum efficiency pho-
todetectors. After the passband filter, we then get the following operator equivalent
for the heterodyne photocurrent,

îhet(t) = 2qη

√
PLO

~ω0

Re[ÊS(t)e−jωIFt]+2qη

√
PLO ˆRe[EI

†(t)e−jωIFt]+iη(t)?hBP(t), (49)
~ω0

where hBP(t) is the bandpass filter’s impulse response and ? denotes convolution.
To proceed further, we examine the fluctuation behavior of the operator-valued

terms in Eq. (49) by defining

îq(t) = 2qη

√
PLO ˆRe[∆E
~ S(t)e−jωIFt] + 2qη
ω0

√
PLO ˆRe[E†(t)e−jωIFt

ω I ], (50)
~ 0

ˆ ˆ ˆ ˆwhere ∆ES(t) ≡ ES(t) − 〈ES(t)〉. Because EI(t) is in its vacuum state, it is clear
that 〈̂iq(t)〉 = 0. The covariance of this quantum-noise current operator is therefore

q2η2PLO
Kiqiq(t, u) = 〈 ˆ ˆ[ (∆E j

S(t)e− ωIFt + ∆ES
† ˆ(t)ejωIFt)(∆ES(u)e−jωIFu ˆ+ ∆E j

S
† (u)e ωIFu)

~ω0

+ 〈 ˆ(E†(t)e−jωIFt ˆ+ E (t)ejωIFt ˆ
I I )(EI

†(u)e−jωIFu ˆ+ EI(u)ejωIFu)], (51)

12



where we have omitted signal×image-band cross terms because the signal and the
image band are in a product state with the image band having zero mean. At this
point we multiply out and invoke the commutators

sin[∆ω(t u)/2]ˆ ˆ ˆ ˆ[∆ES(t),∆ES
† (u)] = [EI(t), EI

†(u)] =
−

, (52)
π(t− u)

which follow from the usual δ-function commutators after accounting for the field op-
erators here being bandlimited to |ω| ≤ ∆ω/2. Employing the statisical stationarity
of the signal, we then get

2q2η2PLO
Kiqiq(t+ τ, t) =

sin[∆

~ω0

{
ωτ/2] (n)

cos[ωIFτ ] + Re[K )
τ ESE

(τ e
π S

−jωIFτ ]

(p)
+ Re[K j

ESE
(τ)e

S

− ωIF(2t+τ)]

(n) ˆ ˆ (p)

}
, (53)

ˆwhere KE (τ) ∆E† ˆ(t+τ)∆ES(t) and K (τ) ∆ES(t+τ)∆ES(t) are the
SES

≡ 〈 S 〉 ESES
≡ 〈 〉

signal field’s normally-ordered and phase-sensitive covariance functions, respectively.
Three points are worth noting at this juncture. First, we see that îq(t) does

not have a stationary covariance function when the signal field has a nonzero phase-
sensitive covariance function. As we shall see in a subsequent lecture, nonzero phase-
sensitive covariance functions are the hallmark of a continuous-time squeezed state.
Such a state’s phase-sensitive noise implies that the heterodyne current will have
phase-sensitive behavior about the intermediate frequency, ωIF. The second point
to note is that the first term on the right in Eq. (53), which originates from the
commutators in Eq. (52), can be associated with a zero-mean, stationary, classical
Gaussian noise process we will label icomm(t), whose spectral density is

LO

Sicommicomm( ) =

{
q2η2P

ω ~ , forω0
|ω ± ωIF| ≤ ∆ω/2

(54)
0, otherwise.

Our final point concerns the implication of the preceding results for the covariance of
the full heterodyne current,

Kihetihet(t+ τ, t) = Kiqiq(t+ τ, t) +Ki′ηi
′
η
(τ) (55)

2q2ηPLO
=

sin(∆

~ω0

{
ωτ/2)

cos(ωIFτ)
πτ

(n) (p)
+ ηRe[KE E (τ)e j

S

−jωIFτ ] + ηRe[K ωIF(2t+τ)
S E (

SE
τ)e

S

− ] , (56)

ˆ

}
where i′η(t) = iη(t) ? hBP(t). It can be shown that were ES(t) replaced by a complex-
valued classical random process ES(t), then the last line in Eq. (56) would represent
additional fluctuations beyond those accounted for by the term in the first line of
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that equation.13 Quantum mechanics, however, allows that last-line term to reduce
the noise below the value contributed by icomm(t). Of course, as we will now show,

ˆachieving such a noise reduction requires ES(t) to be in a non-classical state.
ˆLet us see what happens in our quantum treatment when the signal field ES(t) is

(n)
in the coherent state |ES(t)〉.14 For a coherent-state signal field both KESE

(τ) and
S

(p)
KE E (τ) vanish, making

S S

îhet(t) = 〈̂ihet(t)〉+ icomm(t) + i′η(t), (57)

with

〈̂ihet(t)〉 = 2qη

√
PLO

Re[E j
S(t)e− ωIFt], (58)

~ω0

and ∆îhet(t) ≡ îhet(t)− 〈̂ihet(t)〉 being a zero-mean, Gaussian random process having
spectral density

S∆ihet∆ihet(ω) = Sicommicomm(ω) + Si′ηi′η(ω) (59)

=

{
q2ηPLO

~ , forω0
|ω ± ωIF| ≤ ∆ω/2

(60)
0, otherwise.

Because the covariance function of ihet(t) equals the covariance function of ∆ihet(t),
the quantum theory of continuous-time heterodyne detection with a coherent-state
signal field (and a vacuum-state image-band field) yields measurement statistics that
are identical to those of the semiclassical theory when the latter employs deterministic
illumination with the same classical baseband signal field ES(t). Both theories tells
us that the mean photocurrent contains a frequency-downtranslated (from ω0 + ωIF

center frequency to ωIF center frequency) replica of the signal field embedded in a
passband-filtered white Gaussian noise. However, as we saw for homodyne detec-
tion, the physical interpretation of the heterodyne noise is very different in the two
photodetection theories. In semiclassical theory it arises from local-oscillator shot
noise, but in quantum theory it is the sum of the signal-light quantum noise, the
image-band quantum noise, and the quantum noise contributed by having sub-unity
quantum efficiency detectors.

In general, the semiclassical theory for heterodyne detection must have at least
local-oscillator shot noise in its heterodyne noise spectrum, as we found for the homo-
dyne case. Specifically, if EIF(t) ≡ Re[ES(t)e−jωIFt] is a stationary classical random

13Specifically, if we make this replacement then

Var

[∫
2q2ηP

dtˆ
LO

ihet(t)φ(t)

]
≥
∫
dt

∫
du

sin[∆ω(t− u)/2]

~ω0
cos[ωIF(t− u)]φ(t)φ(u) 0

π(t− u)
≥

for all real-valued time functions φ(t).
14The eigenfunction {ES(t) : −∞ < t <∞} must be bandlimited to |ω| ≤ ∆ω/2, for consistency

ˆwith our earlier assumption about the modes contained in ES(t).
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process we have that

q2ηPS LO
Ihetihet(ω) =

~ω0︸ ︷︷
4q2η2PLO

+
SEIFEIF

(ω)

LO shot noise

︸ ~ω0︸ ︷︷ , for |ω ± ωIF| ≤ ∆ω/2, (61)

signal-beam excess noise

where both terms on the right are non-negative.

︸
It is possible for a quantum state

to yield a sub-shot-noise spectrum in a heterodyne measurement, but for that to be
so requires a non-vacuum image-band field, because of the non-stationary nature, in
general, of quantum photodetection’s îq(t) when the image band is in its vacuum
state.15

The Road Ahead

In the next lecture we shall turn to our final major topic for the semester, i.e., how
we can generate non-classical light through nonlinear optics. The specific nonlinear
optical system we’ll consider is continuous-wave pumping of a second order (χ(2))
nonlinearity. Ultimately, we will see that such a system can produce quadrature
noise squeezing, photon-twins behavior, and polarization entanglement.

15For a single-mode-signal/single-mode-image example of such a sub-shot-noise heterodyne-
detection signature, see J.H. Shapiro, “Phase conjugate quantum communication with optical het-
erodyne detection,” Opt. Lett. 20, 1059–1061 (1995). That example can be generalized to full
continuous-time operation.
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