

6.453 Quantum Optical Communication - Lecture 10

- Announcements
 - Turn in problem set 5
 - Pick up problem set 5 solutions, problem set 6, lecture notes, slides
- Single-Mode Photodetection
 - Signatures of non-classical light
 - Squeezed-state waveguide tap

rle Ulff 2 www.rie.mit.edu/qoptics

Single-Mode Semiclassical Photodetection

Photon-Units Classical Field:

$$E(t) = \frac{ae^{-j\omega t}}{\sqrt{T}}, \text{ for } 0 \le t \le T$$

- Direct Detection: given a , N is Poisson with mean $\left|a\right|^2$
- Homodyne Detection: given a, $\alpha_{\theta} \sim N(a_{\theta}, 1/4)$
- Heterodyne Detection: given a,

$$\{\alpha_1, \alpha_2\}$$
 SI, $\alpha_i \sim N(a_i, 1/2)$

rle III

3

Single-Mode Quantum Photodetection

Photon-Units Field Operator:

$$\hat{E}(t) = \underbrace{\frac{\hat{a}e^{-j\omega t}}{\sqrt{T}}}_{\text{excited mode}} + \underbrace{\text{other terms}}_{\text{unexcited modes}}$$

- Direct Detection: $\hat{N}=\hat{a}^{\dagger}\hat{a}$ measurement
- Homodyne Detection: $\hat{a}_{ heta} = \mathrm{Re}(\hat{a}e^{-j heta})$ measurement
- Heterodyne Detection: \hat{a} measurement

rle III

www.rle.mit.edu/qoptics

Single-Mode Random Fields: Classical vs. Quantum

- Classical Field: $a = a_1 + ja_2$ complex random variable
 - Measurement variances

Direct Detect. N	Homodyne Det. α_1	Heterodyne Det. α_1
$\left \langle a ^2 \rangle + \langle \Delta(a ^2)^2 \rangle \right $	$\frac{1}{4} + \langle \Delta a_1^2 \rangle$	$\frac{1}{2} + \langle \Delta a_1^2 \rangle$

- Quantum Field: $\hat{
 ho}_a$ density operator of the excited mode
 - Measurement variances

Direct Detect. \hat{N}	Homodyne Det. \hat{a}_1	Heterodyne Det. $\hat{a}_1 + \hat{a}_{I_1}$
$\langle \Delta \hat{N}^2 angle$	$\langle \Delta \hat{a}_1^2 \rangle$	$\langle \Delta \hat{a}_1^2 \rangle + \frac{1}{4}$

where
$$\langle \hat{A} \rangle = \operatorname{tr}(\hat{\rho}_a \hat{A})$$

Signatures of Non-Classical Light

"Classical Light" = random mixture of coherent states

$$\hat{\rho}_a = \int d^2 \alpha P(\alpha, \alpha^*) |\alpha\rangle\langle\alpha|, \quad P(\alpha, \alpha^*) \text{ a 2-D pdf}$$

- Sub-Poissonian Statistics: $\langle \Delta \hat{N}^2 \rangle < \langle \hat{N} \rangle$
- Quadrature-Noise Squeezing: $\langle \Delta \hat{a}_{\theta}^2 \rangle < \frac{1}{4}$
- Heterodyne-Detection Statistics Determine $\hat{
 ho}_a$

$$\hat{\rho}_a = \int \frac{\mathrm{d}^2 \zeta}{\pi} \, \chi_A^{\hat{\rho}_a}(\zeta^*, \zeta) e^{-\zeta \hat{a}^\dagger} e^{\zeta^* \hat{a}}, \quad \chi_A^{\hat{\rho}_a}(\zeta^*, \zeta) \stackrel{\mathcal{F}}{\longleftrightarrow} \langle \alpha | \hat{\rho}_a | \alpha \rangle$$

rle III

Optical Waveguide Tap — Semiclassical

Fused Fiber Coupler

Coupler is a beam splitter

$$\begin{array}{rcl} a_{s_{\mathrm{out}}} & = & \sqrt{T}a_{s_{\mathrm{in}}} + \sqrt{1 - T}a_{t_{\mathrm{in}}} \\ a_{t_{\mathrm{out}}} & = & \sqrt{1 - T}a_{s_{\mathrm{in}}} - \sqrt{T}a_{t_{\mathrm{in}}} \end{array}$$

- Tap input is zero
- Homodyne SNR at signal input ${
 m SNR_{in}}=4|a_{s_{in}}|^2$
- Homodyne SNR at signal output ${
 m SNR_{out}} = 4T|a_{s_{\rm in}}|^2$
- Homodyne SNR at tap output ${\rm SNR_{tap}} = 4(1-T)|a_{s_{\rm in}}|^2$

www.rle.mit.edu/goptics

Optical Waveguide Tap — Quantum

Fused Fiber Coupler

Coupler is a beam splitter

$$\begin{split} \hat{a}_{s_{\text{out}}} &= \sqrt{T} \hat{a}_{s_{\text{in}}} + \sqrt{1 - T} \hat{a}_{t_{\text{in}}} \\ \hat{a}_{t_{\text{out}}} &= \sqrt{1 - T} \hat{a}_{s_{\text{in}}} - \sqrt{T} \hat{a}_{t_{\text{in}}} \end{split}$$

- Tap input is in squeezed vacuum
- Homodyne SNR at signal input $SNR_{in} = 4|a_{sin}|^2$

$$SI(It_{\rm in} = I|ws_{\rm in}|$$

Homodyne SNR at signal output

$$SNR_{out} = \frac{4T|a_{s_{in}}|^2}{T + (1 - T)(\mu - \nu)^2}$$

Homodyne SNR at tap output

$$SNR_{tap} = \frac{4(1-T)|a_{s_{in}}|^2}{(1-T) + T(\mu - \nu)^2}$$

www.rle.mit.edu/qoptics

Non-Ideal Quantum Photodetection

- Quantum Efficiency $\,\eta < 1$:

$$\hat{a}' \equiv \sqrt{\eta} \, \hat{a} + \sqrt{1 - \eta} \, \hat{a}_v, \quad \hat{a}_v \text{ in vacuum state}$$

- Direct Detection: $\hat{a}'^{\dagger}\hat{a}'$ measurement
- Homodyne Detection: $\operatorname{Re}(\hat{a}'e^{-j\theta})$ measurement
- Heterodyne Detection: \hat{a}' measurement

rle III

your do mit adu/goptice

Coming Attractions: Lecture 11

- Lecture 11:
 - Single-Mode and Two-Mode Linear Systems
 - Attenuators
 - Phase-Insensitive Amplifiers
 - Phase-Sensitive Amplifiers

rie IIIi 12 www.rle.mit.edu/qoptic

MIT OpenCourseWare https://ocw.mit.edu

6.453 Quantum Optical Communication Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.