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Problem 1 (20 points)
For each statement below, indicate whether it is True or whether it is False, and
provide a brief explanation of your reasoning.

(a)

(10 points) Consider a pair of single-mode electromagnetic fields, with annihila-
tion operators a4 and ap, whose joint state 1)) ap is a pure state. Suppose that
the N 4= ala 4 and N B = aLaB measurements are made on these modes and
that the resulting classical outcomes, N4 and Np, have measurement statistics
which satisfy

Var(N4 — Ng) < Var(N,) + Var(Np),

where Var(-) denotes variance.
True or False: The joint state of the a4 and ag modes must be non-classical.

This statement is true. The only pure-state |¢))4p that is classical is the two-
mode coherent state, |)ap = |aa)alap)p, and semiclassical photodetection
theory gives correct measurement statistics for this state. Semiclassical photode-
tection theory tells us that for [¢)) 4p = |aa)a|ap)p the photon-count variances
obey Var(N4) = |aa|* and Var(Ng) = |ap|?. Moreover, semiclassical photode-
tection theory also tells us that these variances are due to shot noise and that
the shot noises from different photodetectors are statistically independent ran-
dom variables. So, for [¢))4p a classical state, we have that Var(Ny — Np) =
Var(Ny4)+ Var(Ng). Hence for us to have Var(N4— Ng) < Var(N,4)+ Var(Np),

the joint state |1) 4p must be non-classical.
(10 points) Consider a single-mode electromagnetic field with photon annihila-
tion operator @ whose Wigner distribution is W (a*, a).

True or False: The function F(oy) f das W(a*, «), where oy and oy are
the real and imaginary parts of a, s non- negatwe for all values of o .

This statement is true. To show that, we use the relation between the Wigner
distribution and the Wigner characteristic function,

Wi(a*, o) = /d CXW(C )et e,
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where p(aq) is the probability density function (pdf) for homodyne detection
of the a; = Re(a) quadrature to yield outcome ;. Because pdfs must be

non-negative, we have that F'(ay) is non-negative for all a;.

Problem 2 (40 points)

Consider the asymmetric beam-splitter setup shown in Fig. 1.
beam spitter is illuminated by a signal mode (with annihilation operator ag) and a
local-oscillator (LO) mode (with annihilation operator aro). We will be interested
in the output mode from that beam splitter whose annihilation operator is oy =
Veas + /1 —eapo, where 0 < ¢ < 1 and the apo mode is in the coherent state

16v/€/(1 = €))ro-

as I:>/|:(> dout = Veas + V1 —earo
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Figure 1: Asymmetric beam-splitter setup.

(a) (10 points) Suppose that the ag mode is in the coherent state |7)s.

In this setup, the

(i) With only a simple statement of justification, find the state of the Gous

mode.

When a beam splitter’s two input ports are illuminated by coherent states,
then its two output ports are in coherent states whose eigenvalues are found
by propagating the input-modes’ mean values through the beam-splitter



relation. So, for the case at hand, we have that the state of the a,,; mode
is the coherent state |v/€ (7 + 3))out-

(i) Use your result from (i) to find pg’zzt(a*, @) = out (| Paoy | @) out 0 the limit
e — 1.
Before letting € — 1, we have that

n * _ A~ —la—+/€ 2
P (0, @) = out{] Paoue|Wout = lout (Ve (7 + B))ous|? = e7107VEOHAI,

After we let € — 1 we get pgjat(a*, a) = e—loa=r=58

(b) (10 points) Figure 2 uses the beam-splitter setup in a photon-counting commu-
nication receiver with the following characteristics.
— The binary message b being communicated is equally likely to be 0 or 1.

— When b = 0, the ag mode is in the coherent state | —v/Ng)s. When b = 1,
the ag mode is in the coherent state |v/Ng)s.

— The beam-splitter setup has 0 < e < 1 and § = +/Ng.

— The receiver’s output is b = 1 when the Ny = @lutdout measurement’s
outcome N,y is non-zero. The receiver’s output is b = 0 when Ny = 0.
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Figure 2: Photon-counting communication receiver.

(1) Use your result from (a) to find the states that the oy mode is in when
b=0and b=1.
The beam-splitter’s inputs are both coherent states when b = 0, so the
result from (a) plus the states given in this part imply that the G,, mode
is in the vacuum state |0)oy when b = 0. The beam-splitter’s inputs are
both coherent states when b = 1, so the results from (a) plus the states
given here imply that the Go, mode is in the coherent state |2v/€Ng)out
when b = 1.

(i) Use your results from (i) to find the receier’s error probability, Pr(b # b).



We have that

Pr(b#b) =Pr(b=1,b=0)+Pr(b=0,b=1)
=Pr(b=0)Pr(b=1|b=0)+Pr(b=1)Pr(b=0|b=1)
1 1
:§PI'(Nout>0|b:0)+§PI‘(Nout:0|b:1)

6_46NS/2.

For ¢ — 1 and Ng > 1, comparing this answer to the binary phase-shift keying
results from Homework Problem 8.4(d) shows that the Fig. 3 receiver’s error
probability is only a factor of two higher than that of the optimum quantum
receiver, and the Fig. 3 receiver’s error probability is significantly lower than
that of the optimum homodyne receiver.

(¢) (10 points) Now, let the ag mode be in an arbitrary state specified by the density
operator pg.

(i)

(i)

Find XZ{‘““ (C*,Q), the anti-normally ordered characteristic function of the
Gouy mode. Your answer should be expressed in terms of the ag mode’s
anti-normally ordered characteristic function, [, and €.

This calculation is straightforward. We have that
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where: the first equality is the definition of x’}***; the second used the beam
splitter’s input-output relation; the third used the fact that the signal and
LO modes’ operators commute with each other plus the definitions of Xffs
and 4195 and the fourth used the anti-normally ordered characteristic
function of a coherent state.

Specialize your result from (1) to the limit e — 1.
When € — 1 we have

XA (C Q) = X Qe

(d) (10 points) For your x"(*" (¢*,¢) from (c), use the operator-valued inverse trans-
form relation,

~ d2< a, ot *a
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to obtain p((le)lt(a*, ) = out{]Pagy |@)out 0 the € = 1 limit. Your answer should
be expressed in terms of p(sn)(oz*, a) = s{a|pag|a)s, and .

The calculation proceeds as follows.
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Note that if ps = |y)ss{7y|, where |y)s is a coherent state, the result just
obtained implies that pout = |7 4+ B)outout (¥ + B, i.e., the Gy mode is in the
coherent state |y + B)out, as found more easily in (a). What (d) has shown is
that the Fig. 1 setup with ¢ — 1 performs a mean-field translation by 5 on an
arbitrary signal-mode input state.

Problem 3 (40 points)

The system shown in Fig. 3 is a quantum non-demolition (QND) setup for measuring
the photon number of an optical mode with annihilation operator a. The cross-Kerr-
effect box has the following input-output relation:
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where £ > 0 is a constant. The homodyne detector is set up to measure the ¢, = Im(¢)
observable.
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Figure 3: Quantum non-demolition detection setup.



(a)

(10 points) Evaluate the number-ket matriz elements,

watar jkbTha
b<nb|a<na|6]m pel"? ba|ma>a‘mb>b

and o
o (Mb]a (0|7 a7 b ) ).

Let’s start with
e eI ) )y, = (70 g )a) (b))
= (70D /g | — 1)a) (v/mg €7 my = 1)),
and
VG Yo [y}, = (@67 g )e) (e Dl

= (y/Ma ej’“m“\ma — 1>a)(ej“(mb’l)\/mb |my — 1)),

We now get the desired matrix elements:

. A-‘—A/\ . ATAA . _ .
b (Mb]a (Na|e?™ eI 00 my ) o my)s = (€7D /Mg 8o —1) (V0 €™ 8y 1),

and

. ATA/\ . ATA/\ . . _
b (Mb]a (Na|e?™ P ae?™ ™ 8bImy) ol ma)s = (/Mg €578 o 1) (€5 ™Dy 81y 1),

where
1, forj==k
Ojr = ,
0, forj # k.

Because these matrix elements determine the operators ¢d and cZé, respectively,
and because they have the same values, we have that [¢, cZ] = 0, i.e., the ¢
and d annihilation operators commute. More generally, it can be shown that
¢,¢1] = [d,d"] = 1, and [¢,d!] = 0. Thus the cross-Kerr effect box preserves
commutator operators, hence no noise modes need to be included in its input-
output relation.

(10 points) Assume that the a mode is in the number state |mg),. Let Ny be
the outcome of the Ny = d'd measurement. Find the probability mass function
Pr(Ng =n). Hint: You do not need to know the state of the b mode.

We have that Ny = d'd = afe=ibeirb'by — 4ta. So, N, can be interpreted
as the outcome of the N, = a'a measurement. Because we are told that the a
mode is in the number state |m,),, we have that

Pr(Ng=n) = [o(n|ma)el® = Snm, .

)
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The equivalence of the N, and N, measurements shows that the cross-Kerr effect
box does not disturb the @ mode’s photon-counting statistics. In particular, if
the a mode is in a number state, then the d mode will be in that same number
state.

(¢) (10 points) Assume that the & mode is in the number state |mgy)q and the b mode

is in the coherent state |\/Ny)y. Find (¢3) and (Aé3), the mean and variance of
the ¢o measurement.

For the mean of ¢y we have that
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= /N, sin(kmy,).

We'll get the variance from (Ac3) = (¢2) — (é2)? once we've found the mean-
square via

(@2 = <<c ;jeT)2>
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1 — cos(2kmy,)
2

= Nysin®(kmg) + 1/4.

= N, +1/4

It follows that (Aé2) = 1/4.

(d) (10 points) Assume that the states of the a and b modes are as given in (c),
and that kmy, < 1. Let co denote the outcome of the ¢o measurement and define
N, = ca/v/Nyk to be the QND estimate of the a mode’s photon number. Find
the mean-squared error of this estimate, i.e., (N, —mg)?).

This part is really easy. From (c) we find that

(N,) = (e2)//Ny ks = (63) )/ Ny & = sin(kmy) /K &~ ma, because km, < 1.



Thus, for the mean-squared error when km, < 1 we get

((Ny —ma)?) = (AN?) = (AE2) /Nyk? = 1/4N,k>.

Thus, when Nyx2 > 1 the QND setup’s output N, is a very accurate estimate
of the @ mode’s photon number.
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